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Overview

This course will provide an introduction to p-adic Hodge theory, a major area of arith-
metic geometry, through p-divisible groups (these are also known as Barsotti–Tate groups,
since the term “p-divisible group” is so ambiguous). Historically, results and conjectures
surrounding p-divisible groups were the main stimulus for the development of p-adic
Hodge theory, and they continue to be relevant in modern research.

We will cover the material in John Tate’s seminal 1967 paper “p-Divisible Groups”,
though often with different proofs and providing many more details and examples; this
will include affine group schemes, p-divisible groups, Tate–Sen theory, Hodge–Tate de-
composition of a p-divisible group, applications to abelian varieties. Then we may do
some Dieudonné theory to study p-divisible groups in characteristic p.

Prerequisites: Standard commutative algebra (e.g., tensor products of k-algebras;
local rings), the first definitions of category theory (e.g., category, functor), and basic
algebraic geometry (e.g., the fact that the category of affine k-schemes is the opposite
of the category of k-algebras), will be sufficient for most of the course. The main appli-
cations of the theory concern abelian varieties, which require some heavier knowledge
of algebraic geometry, but these will not appear until later in the course.
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1 Affine group schemes

1.1 Groups

Before giving the first main definition of the course, it will be useful to consider groups
from a different (more categorical) point of view. A commutative group (in the usual
sense) is the data (G,m, e, i) of

(i) a set G,

(ii) functions “multiplication” m : G × G → G, “unit” e : {1} → G, and “inverse”
i : G→ G,

such that the following diagrams commute:

(I) “Associativity”

G×G×G m×idG //

idG×m
��

G×G
m
��

G×G m
// G

i.e., m(m(a, b), c) = m(a,m(b, c)) for all a, b, c ∈ G.

(II) “e(1) is a left unit”

{1} ×G e×idG //

=

))RR
RRR

RRR
RRR

RRR
R

G×G
m

��
G

i.e., m(e(1), a) = a for all a ∈ G.

(III) “Existence of left inverses”

G×G i×idG // G×G
m
��

G

diag

OO

1 $$I
II

II
II

II
I G

{1}
e

::uuuuuuuuuu

i.e., m(i(a), a) = e(1) for all a ∈ G.

(IV) “Commutativity”

G×G swap //

m
))RRR

RRR
RRR

RRR
RRR

R G×G
m
��
G

i.e., m(b, a) = m(a, b) for all a, b ∈ G.
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Similarly, a commutative topological group is the data (G,m, e, i) of a topological space G
and continuous functions m : G×G→ G, e : {1} → G, i : G→ G, such that diagrams
(I)–(IV) commute. And a commutative Lie group is data (G,m, e, i) of a manifold G,
and smooth functions m : G × G → G, e : {1} → G, i : G → G, such that diagrams
(I)–(IV) commute.

In general, if C is a category with a final object 0 (i.e., each object of C has a unique
morphism to 0) and in which products make sense, then a commutative group object
in C is the data (G,m, e, i) of an object G ∈ Ob C and morphisms m : G × G → G,
e : 0→ G, i : G→ G, such that diagrams (I)–(IV) commute in C.

In particular, the above discussion shows that a commutative group is the same thing
as a commutative group object in the category of sets.

1.2 Affine groups schemes

Until stated otherwise, k denotes any commutative ring. The category of affine k-
schemes is denoted by Affk, and we assume the reader is familiar with the anti-equivalence
of categories

k -alg
'−→ Affk, A 7→ SpecA.

Note that Affk has a zero object, namely Spec k, and a product given by ×k, which
corresponds to ⊗k under the anti-equivalence. The following is the first main definition
of the course:

Definition 1.1. A affine commutative group scheme G over k is a commutative group
object in the category Affk. In light of the anti-equivalence k -alg

'→ Affk, this means
that G = SpecA, where

(i) A is a k-algebra equipped with

(ii) homomorphisms of k-algebras called the “comultiplication” µ : A → A ⊗k A,
“counit” ε : A→ k, and “antipode” ι : A→ A,

such that the opposites of diagrams (I)–(IV) commute after replacing × by ⊗k:

(1) “Coassociativity”

A⊗k A⊗k A A⊗k A
µ⊗idAoo

A⊗k A

idA⊗µ

OO

Aµ
oo

µ

OO

(2) “ε is a left counit”

k ⊗k A A⊗k A
ε⊗idAoo

A

=

iiRRRRRRRRRRRRRRRR
µ

OO
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(3) “Existence of left coinverses”

A⊗k A

mult
��

A⊗k A
ι⊗idAoo

A A
ε

zzuuu
uuu

uuu
uu

µ

OO

k

e

ddIIIIIIIIIII

(4) “Cocommutativity”

A⊗k A A⊗k A
swapoo

A

µ

OO

µ

iiRRRRRRRRRRRRRRRR

The data (A,µ, ε, ι) is known as a cocommutative Hopf algebra over k.
Thus a commutative affine group scheme G is exactly the same thing as a cocom-

mutative Hopf algebra, but whether the geometric or algebraic point of view is more
useful depends on the context. The standard notation for passing between these points
of view is as follows:

• Given the group scheme G, the associated Hopf algebra is (O(G), µG, εG, ιG).

• Given the Hopf algebra (A, ε, µ, ι), the associated group scheme is G = SpecA
(with ε, µ, ι suppressed from the notation).

Remark 1.2. (i) If (A,µ, ε, ι) is an cocommutative Hopf algebra, then it easily fol-
lows from diagram (4) that “ε is a right counit” and “right coinverses exist”, in
the sense that the following diagrams commute:

(2’) k ⊗k A A⊗k A
idA⊗εoo

A

eeLLLLLLLLLLL
µ

OO (3’) A⊗k A

mult
��

A⊗k A
idA⊗ιoo

A A
ε

||xx
xx
xx
xx
x

µ

OO

k

e

bbFFFFFFFFF

(ii) If diagrams (1), (2), (2’), (3), and (3’) all commute, but not necessarily (4), then
G is simply called an affine group scheme, or (A,µ, ε, ι) is called a Hopf algebra,
over k but we do not study them in this course. Hence, for simplicity, we will
henceforth always say “affine group scheme” to mean “affine commutative group
scheme”; this is a relatively common notational simplification, but you should still
be careful when consulting the literature. Similarly, we will say “Hopf algebra” to
mean “cocommutative Hopf algebra”.

(iii) If (A,µ, ε, ι) is a Hopf algebra, then ι2 = idA. This is a helpful exercise, which we
will give an easy proof of later in Lemma 1.13 using the language of points.

Now we devote some time to examples:
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Example 1.3 (Group algebras). Let Γ be a commutative group, and k[Γ] its group
algebra, i.e., k[Γ] is the free k-module with basis set Γ and convolution product:

∑
g∈G

agg ∗
∑
g∈G

bgg :=
∑
g∈G

(∑
h∈G

ahbh−1g

)
g,

where ag, bg ∈ k, and all but finitely many of them are zero.

Define functions

µ : k[Γ]→ k[Γ]⊗k k[Γ],
∑
g∈Γ

agg 7→
∑
g∈Γ

ag(g ⊗ g)

ε : k[Γ]→ k,
∑
g∈Γ

agg 7→
∑
g∈Γ

ag

ι : k[Γ]→ k[Γ],
∑
g∈Γ

agg 7→
∑
g∈G

ag−1g

Proposition 1.4. The data (k[Γ], ε, µ, ι) is a Hopf algebra over k.

Proof. It is an easy exercise that ε, µ, ι are homomorphisms of k-algebras. It remains to
check that diagrams (1)–(4) commute; since these diagrams are k-linear and since k[Γ]
is the free k-module on the set Γ, it is enough to check commutativity on the elements
g ∈ k[Γ], for each g ∈ Γ.

Diagram (1): g ⊗ g ⊗ g = g ⊗ g ⊗ g, which is true.

Diagram (2): 1⊗ g = 1⊗ g.

Diagram (3): mult ◦(ι⊗ id) ◦ µ(g) = mult ◦(ι⊗ id)(g ⊗ g) = mult(g−1 ⊗ g) = 1.

Diagram (4): swap ◦µ(g) = swap(g ⊗ g) = g ⊗ g = µ(g).

The next two example are special cases of k[Γ], which give rise to two of our most
important example of affine group schemes, namely Gm,k and µn,k:

Example 1.5 (The multiplicative group). If Γ is an infinite cyclic group, and we pick a
generator of Γ, then there is a resulting isomorphism of k-algebras k[Γ] ∼= k[t, t−1] (Lau-
rent polynomial algebra) which sends the chosen generator to t; under this identification
the maps µ, ε, ι of the previous example are characterised by

µ(t) = t⊗ t, ε(t) = 1, ι(t) = t−1.

The associated affine group scheme Spec k[t, t−1] is known as the multiplicative group
over k and denoted by Gm,k.

Example 1.6 (Roots of unity). If Γ is a cyclic group of order n ≥ 1, and we pick a
generator of Γ, then there is a resulting isomorphism of k-algebras k[Γ] ∼= k[t]/(tn − 1)
which sends the chosen generator to t; under this identification the maps µ, ε, ι are again
characterised by the facts that

µ(t) = t⊗ t, ε(t) = 1, ι(t) = t−1.

The associated affine group scheme Spec k[t]/(tn− 1) is known as the group of nth roots
of unity over k and denoted by µn,k.
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Example 1.7 (The additive group). We will equip the ring of polynomials k[t] with the
structure of a Hopf algebra, by defining

µ : k[t]→ k[t]⊗k k[t],
∑
n≥0

ant
n 7→

∑
n≥0

an(t⊗ 1 + 1⊗ t)n

ε : k[t]→ k, f 7→ f(0)

ι : k[t]→ k[t],
∑
n≥0

ant
n 7→

∑
n≥0

(−1)nant
n

We check in the next proposition that this is indeed a Hopf algebra. The associated
affine group scheme Spec k[t] is called the additive group over k and denoted by Ga,k.

Proposition 1.8. The data (k[t], µ, ε, ι) is a Hopf algebra over k.

Proof. It is again an easy exercise that µ, ε, ι are homomorphisms of k-algebras. Hence
all the maps in diagrams (1)–(4) are maps of k-algebras, and so it is enough to check
commutativity on the element t ∈ k[t].

Diagram (1): Both routes around the diagram give t⊗ 1⊗ 1 + 1⊗ t⊗ t+ 1⊗ 1⊗ t.
Diagram (2): Both routes around the diagram give 1⊗ t.
Diagrams (3), (4): left to the reader.

Example 1.9. (A stranger example: G(a,b),k) Fix elements a, b ∈ k satisfying ab = 2,
and put A := k[t]/(t2 + at). Then the element

(t⊗ 1 + 1⊗ t+ bt⊗ t)2 + a(t⊗ 1 + 1⊗ t+ bt⊗ t)

of A is zero (Check this!), and so there is a map of k-algebras µ : A → A⊗k A charac-
terised by µ(t) = t⊗1+1⊗t+bt⊗t. Also set ε : A→ k, f 7→ f(0), and ι = idA : A→ A.

It is not hard to check that (A,µ, ε, ι) is a Hopf algebra over k; the associated affine
group scheme SpecA is sometimes denoted by G(a,b),k (or some variant on this notation).

Example 1.10 (The trivial/zero affine group scheme over k). Let A = k, and define

µ : k
'→ k ⊗k k, a 7→ a⊗ 1 = 1⊗ a
ε : k → k, a 7→ a

ι : k → k, a 7→ a

These are clearly maps of k-algebras which makes diagrams (1)–(4) commute, and so
(k, µ, ε, ι) is a Hopf algebra over k, which we call the trivial Hopf algebra. The associated
affine group scheme Spec k is called the trivial, or zero, group scheme over k and denoted
by 0k (or, later, simply by 0 when it is unlikely to cause confusion).

We finish this introductory section by noting that comultiplication and the antipode
are predetermined modulo Ker ε:

Lemma 1.11. Let (A,µ, ε, ι) be a Hopf algebra over k. Then:

(i) the map k ⊕Ker ε→ A, (a, b) 7→ a+ b is an isomorphism of k-modules;

(ii) µ(a) ≡ −ε(a) + a⊗ 1 + 1⊗ a mod Ker ε⊗k Ker ε;

(iii) ι(a) ≡ −a mod (Ker ε)2 for any a ∈ Ker ε.
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Proof. (i): The inverse map A → k ⊕ Ker ε is given by a 7→ (εa, a − ε(a)): note that ε
satisfies ε(a) = a for any a ∈ k, since it is a homomorphism of k-algebras.

(ii): Part (i) allows us to write

A⊗k A = k ⊕ (Ker ε⊗k k) + (k ⊗k Ker ε) + (Ker ε⊗k Ker ε)

(the first copy of k really means k · 1A ⊗ 1A). So if a ∈ A then we may write

µ(a) = b+ c⊗ 1 + 1⊗ d+ z

where b ∈ k, c, d ∈ Ker ε, and z ∈ Ker ε⊗k Ker ε.

Diagram (2) implies that a = (ε⊗ idA)(b+ c⊗ 1 + 1⊗ d+ z) = b1A + d. Similarly,
diagram (2’) implies that a = b1 + c. Applying ε shows that b = ε(a). In conclusion,

µ(a) = ε(a) + (a− ε(a))⊗ 1 + 1⊗ (a− ε(a)) + z = −ε(a) + a⊗ 1 + 1⊗ a+ z,

as required.

(iii): Apply diagram (3) to part (ii) – Check this!

End of Lecture 1

1.3 Points of an affine group scheme

The notion of the points of an affine group scheme with values in a k-algebra is extremely
important:

Definition 1.12 (Points in a k-algebra). For any k-algebra R, the functor of points
HomAffk

(SpecR,−) : Affk → Sets is a covariant functor taking ⊗k to × and Spec k to
{1}. Hence it takes an affine group scheme G to a commutative group G(R).1

Explicitly, if G = SpecA, then

G(R) = HomAffk
(SpecR,G) = Homk -alg(A,R),

with operations:

• addition G(R)×G(R)→ G(R) given by

(f, g) 7→ the composition A
µ−→ A⊗k A

f⊗g−−→ R⊗k R
mult−−−→ R

• zero element given by A
ε−→ k → R.

• inverse G(R)→ G(R) given by f 7→ f ◦ ι.

N.B., although we typically view G(R) as a group under addition, sometimes it will be
more convenient to denote the operator multiplicatively.

1This is a general construction: If F : C → D is a functor between categories which takes products
to products, and takes a final object 0C to a final object 0D, then F can be applied to any group object
in C to yield a group object in D.
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In particular, taking R = A, the previous construction equips G(A) = Endk -alg(A)
with the structure of a commutative group2 sometimes called the “universal points” of
G. This provides a standard technique to prove results by using knowledge of groups,
of which the following is the simplest example:

Lemma 1.13. If (A,µ, ε, ι) is a Hopf algebra, then ι2 = idA.

Proof. By the previous definition, Endk -alg(A) is a commutative group in which the
inverse of an element f is f ◦ ι; hence f ◦ ι2 = f ◦ ι ◦ ι is the inverse of the inverse of f ,
i.e., it is f . Taking f = idA proves the claim.

Now we check how the points look for our standard examples of affine group schemes,
justifying their names:

Proposition 1.14. For any k-algebra R, there are isomorphisms of groups

Gm,k(R)
'→ R×, µn,k(R)

'→ {x ∈ R× : xn = 1}, Ga,k(R)
'→ R+

where R× is the group (under multiplication) of invertible elements in R, and R+ is the
underlying additive subgroup of R.

Proof. Recall from Example 1.6 that Gm,k = Spec k[t, t−1], with Hopf algebra structure
given by µ(t) = t⊗ t, ε(t) = 1, and ι(t) = t−1. There is certainly a bijection of sets

evt : Gm,k(R) = Homk -alg(k[t, t−1], R)
'−→ R×, f 7→ f(t),

so we must check that this bijection respect the unit element and product structure on
both sides. Firstly, the identity evt(ε) = 1 is easy. Secondly, fixing f, g ∈ Gm,k(R),
recall from the previous definition that their product (this is the main example in which
we view G(R) multiplicatively rather than additively!) fg is given by the morphism of
k-algebras

A
µ−→ A⊗k A

f⊗g−−→ R⊗k R
mult−−−→ R;

hence evt(fg) = mult((f ⊗ g)(t ⊗ t)) = mult(f(t) ⊗ g(t)) = f(t)g(t), and so evt is a
homomorphism of groups. Since evt is bijective, we have proved it is an isomorphism of
groups.

“Evaluation at t” also defines bijections of sets

µn,k(R)
'→ {x ∈ R× : xn = 1}, Ga,k(R)

'→ R+,

but we leave it to the reader as a very important exercise to verify that they are actually
isomorphisms of groups.

Example 1.15. Recall the affine group scheme G(a,b),k from Example 1.9. Then eval-
uation at t again defines an isomorphism of groups

G(a,b),k(R)
'−→ {x ∈ R : x2 + ax = 0},

where the right is equipped with addition law x+a,b y := x+ y + bxy.

2In fact, if (A,µ, ε, ι) is the usual data of a Hopf algebra but we do not assume that diagrams (1)–(4)
commute, then G(A) being a commutative group under the previous construction is equivalent to the
commutativity of diagrams (1)–(4). In other words, G(A) being a group is completely characterising
that A is a Hopf algebra.
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2 The category of affine group schemes

k continues to be any (commutative) ring. In this section we develop enough properties
of the category of affine group schemes so that we can manipulate them as though they
were honest groups. In particular, we will discuss subgroups, kernels, quotients, exact
sequences, and show that the category is additive.3

Most importantly, for any affine group scheme G, and n ≥ 0, we will define the
sub affine group scheme G[n] of n-torsion points, which is essential in order to define
p-divisible groups.

2.1 Sub affine group schemes

Definition 2.1. Let G = SpecA be an affine group scheme over k. A sub affine group
scheme H ⊆ G (or just subgroup) is an affine group scheme which is a closed subscheme
of G compatibly with the product, unit, and inverse. In other words H = SpecA/I,
where I ⊆ A is an ideal and (A/I, µ, ε, ι) is a quotient Hopf algebra of (A,µ, ε, ι) in the
obvious sense, i.e., the following diagrams commute:

A

��

µ // A⊗k A

��
A/I

µ
// A/I ⊗k A/I

A

��

ε // k

A/I

ε

>>||||||||

A

��

ι // A

��
A/I

ι
// A/I

It should now be clear that sub affine group schemes of G are in one-to-one correspon-
dence with ideals I of A satisfying the following three conditions:

µ(I) ⊆ Ker(A⊗k A→ A/I ⊗k A/I), ε(I) = 0, ι(I) ⊆ I.

Such ideals are called Hopf ideals of A.

Example 2.2. The zero group scheme 0k is the sub affine group scheme of G corre-
sponding to the Hopf ideal Ker ε ⊆ A. At the other extreme, G is a sub affine group
scheme of itself, corresponding to the zero ideal.

Example 2.3. Let Γ be a commutative group, and Γ′ ⊆ Γ a subgroup. Then k[Γ]
contains a Hopf ideal

I := {
∑
g∈Γ

agg ∈ k[Γ] :
∑
g′∈Γ′

ag+g′ = 0 ∀g ∈ Γ},

and the quotient Hopf algebra k[Γ]/IΓ′ is isomorphic to k[Γ/Γ′].

Example 2.4. Taking Γ′ := nZ ⊆ Γ := Z in the previous example, we see that µn,k
is the sub affine group scheme of Gm,k corresponding to the Hopf ideal (tn − 1) of
k[t, t−1] = O(Gm,k).

The next two results concern sub affine group schemes of Ga,k (see Example 1.7 if
you need a reminder on the Hopf algebra structure on k[t] = O(Ga,k)):

3A category C is additive if and only if each set of morphisms has the structure of an abelian group,
in such a way that composition Hom(H,F )×Hom(G,H)→ Hom(G,F ) is bilinear.
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Proposition 2.5. Let f =
∑d

i=0 ait
i ∈ k[t] be a monic4 polynomial 6= t. Then the ideal

(f) is a Hopf ideal of k[t] if and only if

(i) there is a prime number p > 0 (necessarily unique) which is zero in k,

(ii) and ai = 0 whenever i is not a power of p.

Proof. Recall that (f) is a Hopf ideal if and only if the following three conditions hold:

µ(f) ∈ Ker(k[t]⊗k k[t]→ k[t]/(f)⊗k k[t]/(f)), ε(f) = 0, ι(f) ∈ (f). (†)

The first condition says that
∑n

i=0 ai(t⊗ 1 + 1⊗ t)n vanishes in k[t]/f ⊗k k[t]/f . Since
the latter ring is a free k-module with basis ti ⊗ tj , 0 ≤ i, j < n, we easily see by a
binomial expansion that the vanishing is equivalent to the vanishing in k of ai

(
n
j

)
= 0

for all 0 < j < i ≤ n, which in turn is equivalent to the vanishing of ai gcd1<j<i

(
n
j

)
= 0

for 0 < i ≤ n.

But it is reasonably well-known that

gcd
1≤j<i

(
i

j

)
=

{
p i = pr for some r ≥ 1 and prime number p > 0

1 else

and so the first condition in (†) is equivalent to the vanishing of the following elements of
k: ai whenever i is not a power of some prime number p, and pai whenever i is a power
of some prime number p. In particular, since ad = 1, we see that d = pn for a certain
prime number p which is zero in k. All other prime numbers are therefore invertible in
k, and so the first condition in (†) is equivalent to having ai = 0 whenever i is not a
power of p.

In summary, the first condition appearing in (†) is true if and only if f has the form
f =

∑n
i=0 bit

pi for some bi ∈ k. Then the other two conditions in (†) are always true:

ε(f) = f(0) = 0, and ι(f) =
∑n

i=0 bi(−t)p
i

= (−1)pf .

Definition 2.6. When a prime number p is zero in k, the sub affine group scheme of
Ga,k corresponding to the Hopf ideal (tp

r
) ⊆ k[t] is denoted by αpr,k.

Corollary 2.7. Suppose that k is a field. Then the following affine group scheme over
k contains no proper, non-zero sub affine group scheme:

(i) Ga,k, if char k = 0;

(ii) αp,k, if char k = p > 0;

Proof. By standard commutative algebra, any ideal of k[t] is generated by a single monic
polynomial.

So, if char k = 0, then the previous proposition implies that the only proper sub
affine group scheme G of Ga,k corresponds to the Hopf ideal (t) = Ker ε, so that G = 0k.

On the other hand, if char k = p > 0, then any proper sub affine group scheme
G of αp,k corresponds to a Hopf ideal I of k[t] which contains tp, and then previous
proposition again implies that I = (t), whence again G = 0k.

4Exercise: See what happens if we do not assume that f is monic.
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Remark 2.8 (Points of a sub affine group scheme). If H is a sub affine group scheme of
G = SpecA corresponding to Hopf ideal I ⊆ A, then, for any k-algebra R, the R-points
H(R) is a subgroup of G(R), via

H(R) = Homk -alg(A/I,R) = {f ∈ G(R) = Homk -alg(A,R) : f(I) = 0} ⊆ G(R).

Check this if you are uncertain.
For example, recall from Proposition 1.14 that there is an isomorphism of groups

evt : Ga,k(R)
'→ R+; under this isomorphism, and assuming that a prime number p is

zero in k, the group αpr,k(R) identifies with the subgroup {x ∈ R+ : xp
r

= 0} of R+.

2.2 Morphisms of affine groups schemes

Now we study maps between affine group schemes.

Definition 2.9. Let G = SpecA and F = SpecB be affine group schemes over k. A
morphism Φ : G→ F is a morphism in Affk which is compatible with the multiplications,
units, and inversions. In other words, it is a homomorphism of k-algebras φ : B → A
satisfying µφ = (φ ⊗ φ)µ′, εφ = ε′, and ιφ = φι′, which is called a homomorphism of
Hopf algebras.

The set of morphisms from G to F is denoted as usual by Hom(G,F ), and the
category of affine group schemes will be denoted by ACk.

5

Φ is said to be an isomorphism if and only if it is an isomorphism of schemes, i.e. φ
is an isomorphism of k-algebras.

Remark 2.10. If R is a k-algebra, then any morphism Φ : G→ F induces a homomor-
phism of groups

ΦR : G(R) = Homk-alg(A,R)→ F (R) = Homk-alg(B,R), f 7→ f ◦ φ.

In other words, G 7→ G(R) is a functor from ACk to the category of abelian groups.6

Example 2.11. For any affine group scheme G, there is a unique morphism of affine
group schemes G→ 0k (it is given by the algebra structure map k → A), and a unique
morphism 0k → G (it is given by the counit ε : A → k). Check both of these. In
categorical language, 0k is the zero object of the category ACk.

If F is another group scheme, the zero morphism from G to H is by definition the
composition G→ 0k → H.

Example 2.12. Recall the affine group scheme G(a,b),k from Example 1.9. There is
an isomorphism G(a,b),k

∼= G(a′,b′),k if and only if there exists a unit u ∈ A× such that
a′ = ua and b′ = u−1b.

Example 2.13. Suppose that a prime number p is zero in k. Then µp,k = Spec k[t]/(tp−
1) and αp,k = Spec k[t]/(tp) are isomorphic as k-schemes, via the isomorphism of k-
algebras

k[t]/(tp)
'→ k[t]/(tp − 1), t 7→ t− 1

(note that tp − 1 = (t − 1)p), but they are not isomorphic as affine group schemes (we
will prove this later).

5There is no standard notation for this category; the C is to remind us that our affine group scheme
are commutative

6The categorically inclined reader may to formulate a general statement: any functor between cate-
gories induces a functor on the associated categories of group objects.
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Example 2.14. For each n ≥ 1, let’s see that φn : k[t, t−1]→ k[t, t−1], f(t) 7→ f(tn) is
a homomorphism of Hopf algebras (as usual, the Hopf algebra structure on k[t, t−1] is
the one defining Ga,k). Indeed, for any f(t) ∈ k[t, t−1], we have

(φ⊗ φ)(µ(t)) = (φ⊗ φ)(t⊗ t) = tn ⊗ tn = (t⊗ t)n = µ(t)n = µ(tn) = µ(φ(t))

ε(φ(f(t))) = ε(f(tn)) = f(1n) = f(1) = ε(f(t))

ι(φ(f(t))) = ι(f(tn)) = f(t−n) = φ(f(t−1)) = φ(ι(f(t)))

In other words, we have defined a morphism of group schemes Φn : Gm,k → Gm,k.
Now suppose that R is a k-algebra. Recall:

• from Remark 2.10 that Φn induces a homomorphism Gm,k(R)
Φn,R−−−→ Gm,k(R),

• from Proposition 1.14 that there is an isomorphism of groups evt : Gn,k(R)
'→ R×,

Check, using the definitions of all the maps, that the corresponding homomorphism
R× → R× is x 7→ xn.

Our next goal is to construct an analogue of the morphism Φn for any affine group
scheme G.

End of Lecture 2

To be precise, we want to prove the following:

Theorem 2.15. Let G be an affine group scheme over k. Then:

(i) there exists a unique morphism n = [n] : G→ G with the property that the induced
homomorphism nR : G(R)→ G(R), for any k-algebra R, is multiplication by n;

(ii) there exists a unique sub affine group scheme G[n] ⊆ G with the property that,
for any k-algebra R, the inclusion G[n](R) ⊆ G(R) identities G[n](R) with the
n-torsion {x ∈ G(R) : nx = 0}.

Note that we have already proved the theorem in the special case G = Gm,k: the
morphism n was constructed in the previous example, and the subgroup Gm,k[n] is
exactly µm,k. To be precise, we have not proved uniqueness, but we do this in a moment
for general G.)

Definition 2.16. (Pre-definition of p-divisible group) Let p be a prime number. A
p-divisible group, or Barsotti–Tate group, over k is (roughly – we will be more precise
later) will be defined to be a sequence of affine groups schemes G1, G2, . . . over k such
that Gn = Gn+1[pn] for all i ≥ 1, together with extra conditions on the k-modules
O(Gn).

Example 2.17. The main example is µp,k ⊂ µp2,k ⊂ · · ·

We now mention explicitly the following “shadow of the Yoneda Lemma”; note that
parts (i) and (ii) prove the uniquness assertion of the previous theorem:

Lemma 2.18. (i) If Φ,Ψ : G→ F are homomorphisms of affine group schemes such
that ΦR = ΨR for all k-algebras R, then Φ = Φ.
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(ii) If H,H ′ ⊆ G are sub affine group schemes such that H(R) = H(R′) (as subgroups
of G(R)) for all k-algebras R, then H = H ′.

(iii) Let G = SpecA and F = SpecB be affine group schemes over k, and Φ : G→ H a
homomorphism of k-schemes (not assumed to be a morphism of group schemes!),
with corresponding k-algebra homomorphism φ : B → A (not assumed to be a
homomorphism of Hopf algebras!). Then Φ is a morphism of affine group schemes
(i.e., φ is a homomorphism of Hopf algebras) if and only if, for every k-algebra R,
the induced map from Remark 2.10, i.e.,

ΦR : G(R) = Homk-alg(A,R) −→ F (R) = Homk-alg(B,R), f 7→ f ◦ φ

is a homomorphism of groups.

Proof. Let’s start with (i), which is very easy. Taking R = A := O(G), the fact that
ΦA(idA) = ΨA(idA) in F (A) is exactly the statement that Φ = Ψ.

The proof of (ii) is similar. Let I, I ′ ⊆ A = O(G) be the Hopf ideals defining H
and H ′. Then H(R) = {f ∈ Homk - algs(A,R); f(I) = 0} and similarly for H ′. So the
assumption says that a k-algebra homomorphism f : A → R vanishes on I if and only
if it vanishes on I ′. By taking R = A/I we deduce that I ′ ⊆ I; by taking R = A/I ′ we
deduce that I ⊆ I ′. So I = I ′, i.e., H = H ′.

(iii) is a similar idea but slightly more tedious, since there are three identities to
check:

• Take R = A⊗kA: and consider the two homomorphisms j1, j2 : A→ A⊗kA given
by j1(a) := a⊗ 1 and j2(a) := 1⊗ a. Their sum, as elements of G(A⊗k A), is µG.
Moreover,

ΦA⊗kA(j1) = φ⊗ 1, ΦA⊗kA(j2) = 1⊗ φ, ΦA⊗kA(µG) = µG ◦ φ

The sum, as element of F (A⊗kA) of these first two elements is (φ⊗φ)◦µF . Since
we are assuming that ΦA⊗kA is additive, it follows that µG ◦ φ = (φ⊗ φ) ◦ µF .

• Take R = k: the fact that Φk sends the identity of G(k) (i.e., εG) to the identity
of F (k) (i.e., εF ) is exactly the statement φ ◦ εF = εG.

• Take R = A: applying the assumption that ΦA : G(A)→ F (A) respects inversion
shows that φιG = ιF ◦ φ.

Now we must define the product of two group schemes and the sum of two morphisms:

Definition 2.19. The product of two affine group schemesG = SpecA andG′ = SpecA′

is by definition G×kG = SpecA⊗kA′, where the comultiplication, counit, and antipode
on A⊗k A′ are given respectively by

A⊗k A′
µ⊗µ′−−−→ (A⊗k A)⊗k (A′ ⊗k A′)

idA⊗swap⊗idA′
'→ (A⊗k A′)⊗k (A⊗k A′)

A⊗k A′
ε⊗ε′−−−→ A⊗k A′

A⊗k A′
ι⊗ι′−−→ A⊗k A′

By tensoring diagrams (1)–(4) from Section 1.2 for A with those for A′, it is very easy
to see (Check if in doubt) that this really makes A⊗kA′ into a Hopf algebra, and hence
G×k G is a well-defined affine group scheme.
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Lemma 2.20. Let (A,µ, ε, ι) be a Hopf algebra over k. Then the homomorphisms of
k-algebras

µ : A→ A⊗k A, ε : A→ k, ι : A→ A

mult : A⊗k A→ A, k → A, swap : A⊗k A→ A⊗k A
are actually homomorphisms of Hopf algebras, where A⊗k A is equipped with the Hopf
algebra structure of the previous definition.

Proof. For any k-algebra R, the six maps of the proposition induce on points the maps

mult : G(R)×G(R)→ G(R), e : 0k(R) = {1} → G(R), i = inv : G(A)→ G(A)

diag : G(R)→ G(R)×G(R), 0 : G(R)→ 0k(R) = {1}, swap : G(R)×G(R)→ G(R)×G(R)

These maps are all group homomorphisms by elementary group theory, so the previous
lemma implies that the original maps of k-algebras were actually maps of affine group
schemes.

The six morphisms of affine group schemes induced by the previous lemma are usually
denoted by

m = mult : G×k G→ G, e : 0k → A, i : G→ G

∆ = diagG→ G×k G, 0 : G→ 0k, swap : G×k G→ G×k G.
What this means is that (G,m, e, i) is not just a group object in the category Affk (by
definition), but it is actually a group object in the category ACk (i.e., diagrams (I)–(IV)
from Section 1.1 are commutative diagrams in ACk).

So, if H is another affine group scheme, then it again follows by functoriality that
Hom(G,H) has the structure of an abelian group such that:

(i) The sum of Φ,Ψ : G→ H is the composition

Φ + Ψ : G
diag−−→ G×k G

Φ×kΨ−−−−→ H ×k H
m−→ H.

(Note that this is really a morphism of affine group schemes by what we just said.)

(ii) The zero element of Hom(G,H) is the zero morphism G→ 0k → H from an earlier
example.

(iii) The inverse of Φ is Φ ◦ ιG.

It also follows from functoriality that, if R is any k-algebra, then

Hom(G,H)→ Hom(G(R), H(R)), Φ 7→ ΦR

is a homomorphism of groups. If you are uncertain about anything in the previous
two paragraphs, you should try to either check the assertions directly in terms of the
definitions of a various group structures, or read more about group objects in general
categories to see that this is all functorial “nonsense”.

In particular, if G = H then End(G) := Hom(G,G) is a commutative group con-
taining idG, and so for each n ∈ Z we define a morphism of affine groups schemes

[n] := n idG = idG + · · ·+ idG︸ ︷︷ ︸
n times

: G→ G.

If R is any k-algebra, then nR : G(R) → G(R) is exactly multiplication by n. This
proves Theorem 2.15(i).

To prove Theorem 2.15(ii), we want to define G[n] to be the kernel of the morphism
n : G→ G. But this requires us to define kernels, which is the next section.
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2.3 Kernels and injections

Now we define the kernel of a morphism:

Lemma 2.21. Let Φ : G = SpecA → F = SpecB be a morphism of affine group
schemes over k. Then the ideal φ(Ker εF )A ⊆ A is a Hopf ideal of A.

Proof. Clearly φ(Ker εF )A is killed by ε. If b ∈ Ker εF , then the final lemma from
Lecture 1 implies that

µG(φ(b)) = φ⊗ φ(µF (b)) ≡ φ(b)⊗ 1 + 1⊗ φ(b) ≡ 0 mod φ(Ker εF )A⊗k φ(Ker εF )A

and

ιGφ(b) = φ(ιF (b)) ≡ −φ(b) mod φ(Ker εF )2A

which suffices.

Definition 2.22. Adopt the setting of the previous lemma. The sub affine group scheme
of G defined by the Hopf ideal φ(Ker ε′)A is called the kernel of Φ and denoted by Ker Φ.

In particular, we the kernel of n : G → G is denoted by G[n] and called the sub
affine group scheme of n-torsion points.

Example 2.23. If k is a field of char 0, then we know that Ga,k is simple; so Ga,k[n] = 0
for all n ≥ 1.

Example 2.24. If p = 0 in k, then there is a morphism of affine group schemes F :
Ga,k → Ga,k given by the homomorphism of k-algebras k[t] 7→ k[t], f 7→ fp

r
. Since

Ker ε = (t), we see that KerF is the subgroup scheme associated to the Hopf ideal (tp
r
),

i.e., KerF = αpr,k.

Example 2.25. Let’s check that Gm,k[n] = µn,k. Firstly, since we know that the
morphism Φn : Gm,k → Gm,k from Example 2.14 induces multiplication by n on R-
valued points for any k-algebra R, the uniqueness part of Theorem 2.15 shows that
Φn = n. Since Ker ε = (t− 1) ⊆ k[t, t−1], we see that Gm,k[n] = Ker Φn is the subgroup
associated to the Hopf ideal (φn(t− 1)) = (tn − 1). But we already know this this Hopf
ideal defines µn,k.

It is now convenient to introduce some notation about injections:

Definition 2.26. Φ is said to be an injection if and only if it is a closed embedding of
schemes, i.e., φ is surjective.

The image Im i of an injection i : H → G is the sub affine group scheme of G defined
by the Hopf ideal Ker(O(G) � O(H). Obviously H

'→ Im i, we we are not really
building anything new, but this is nonetheless a convenient definition.

A sequence of morphisms 0→ H
i−→ G

Φ−→ F is called left exact if and only if i is an
injection with image equal to Ker Φ. Up to isomorphism, every left exact sequence of
course looks like

0→ Ker Φ→ G
Φ−→ F,

but it is still useful to introduce the notation more generally.

Collect together a large number of results on taking points; but this cannot be done
until the abelian structure is in place.
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Proposition 2.27. Let 0→ H
i−→ G

Φ−→ F be an sequence of affine group schemes over
k. If it is left exact, then the sequence of abelian groups

0→ H(R)
iR−→ G(R)

ΦR−−→ F (R)

is left exact for every k-algebra R. The converse is true if we assume that O(H) is
finitely generated as a O(H)-module.

Corollary 2.28. Let i : H → G be a morphism of affine group schemes over k. If i
is injective then Ker i = 0k. The converse is true if we assume that O(H) is finitely
generated as a O(H)-module.

Proof of the Prop. and Corol. Let A = O(G).

⇒ of Prop: So we are assuming that H is the sub affine group scheme of G associated
to I = φ(Ker εF )A. We have maps of Hopf algebras

O(F )
φ−→ A

π−→ A/I = O(H),

for any k-algebra R, we must prove that the sequence of abelian groups is exact

0 −→ Homk -alg(A/I,R)
◦π−→ Homk -alg(A,R)

◦φ−→ Homk -alg(O(F ), R)

Certainly ◦π is injective, so remains to check that if f : A→ R is a k-algebra homomor-
phism, then f factors through A/I (i.e., f(I) = 0) if and only if f ◦ φ equals the zero
element of F (R) (i.e., f ◦ φ(Ker εF ) = 0, since O(F ) = k ⊕ Ker εF ). But I is the ideal
of A generated by φ(Ker εF ), so this is clearly true.

⇒ of Corol: The sequence 0→ Ker i→ H
i−→ G is left exact, so we have just proved

that 0 → Ker i(R) → H(R) → G(R) is left exact for every k-algebra R. But we are
assuming i is injective, so A → O(H) is surjective and hence H(R) ⊆ G(R); therefore
Ker i(R) = 0 for all R. Taking R = O(Ker i) clearly shows that Ker i = 0k.

⇐ of Corol: We are assuming that 0→ 0k → H
i−→ G is left exact. Since 0k(R) = 0

for all R, the ⇒ of Prop proves that H(R) = Hom(O(H), R) → G(R) = Hom(A,R) is
injective for any R. In particular, taking R = O(H)⊗AO(H) and take j1, j2 : O(H)→ R
to be the maps into the two coordinates; this coincide after pull-back to A, so the
injectivity implies that they already coincide. This easily forces O(H)⊗AO(H) = O(H).
If O(H) is finitely generated over A, then this forces O(H) = A.

⇐ of Prop: By ⇐ of Corol we deduce that i is injective, and by assumption we
then see that 0 → ImH(R) → G(R) → F (R) is left exact for each R. But 0 →
Ker Φ → G → F is also left exact for each R, and so ⇒ of Prop shows that also
0→ Ker Φ(R)→ G(R)→ F (R) is also left exact for all R. Hence Ker Φ and ImH have
the same points for all R, which forces them to be equal by the first lemma today.

So, in particular, if G is any affine group scheme, then 0→ G[n]→ G
n−→ G[n] is left

exact by definition, and so, for any k-algebra R, the sequence of groups 0→ G[n](R)→
G(R)

n−→ G(R) is exact, i.e., G[n](R) = {x ∈ G(R) : nx = 0}. This proves Theorem
2.15(ii).

End of Lecture 3
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3 p-divisible groups

In this section k is a Noetherian ring, and p > 0 is some fixed prime number.

Definition 3.1. Recall that a k-module M is said to be finite flat if and only if it
satisfies the following equivalent conditions:

(i) M is finitely generated and flat;

(ii) M is finitely generated and projective;

(iii) M is isomorphic to a direct summand of kn for some n ≥ 0.

Letting m be an arbitrary maximal ideal of k, the rank of M is then defined to be the
dimension of M/mM as a vector space over the field k/m. This rank is well-defined
as long as Spec k is connected (i.e., k is not a product of two rings, or equivalently k
contains no non-trivial idempotents; this is always true if k is local).

Definition 3.2. An affine group scheme G = SpecA over k is said to be finite flat if
and only if A is finite flat as a k-module; the rank of A is called the order of G and
denoted by a variety of notations: #G, |G|, o(G), ord(G).

If A is a finite étale k-algebra, then G is called finite étale (we may review étale
algebras in more detail later; for now, we just need to know that if k is a field, then it
means A ∼=

∏
i kk, for finitely many finite separable field extensions ki/k).

Example 3.3. µn,k, αpr,k, and G(a,b),k are finite flat group schemes of orders n, pr, and
2 respectively. µn,k is finite étale if and only if n is invertible in k.

Gm,k and Ga,k are not finite flat, since the underlying algebras k[t, t−1] and k[t] are
not finitely generated as k-modules!

Example 3.4. We have not yet seen many examples of finite étale group schemes, but
we will now construct them. Let Γ be a commutative group, usually written additively
in this construction, and let kΓ be the set of functions from Γ to k, under pointwise
addition, scaler multiplication, and product:

(f + g)(γ) := f(γ) + g(γ), (fg)(γ) := f(γ)g(γ) ∀γ ∈ Γ.

There is an isomorphism of algebras

kΓ ∼=
∏
Γ

k

f 7→ (f(γ))γ∈Γ

with inverse given by the delta functions δγ . Hence kΓ is a finite étale k-algebra.
Define functions

µ : kΓ → kΓ ⊗k kΓ, f 7→
∑
γ∈Γ

δγ ⊗ f(·+ γ)

ε : kΓ → k, f 7→ f(1)

ι : kΓ → kΓ, f 7→ f(−·)

It is left as an exercise to check that these make kΓ into a Hopf algebra over k. The
associated group scheme Spec kΓ is called the constant group scheme associated to Γ
and denoted by Γk. In conclusion, Γk is a finite étale group scheme over k, of order #Γ.
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Thus we have defined a functor7

finite abelian groups −→ finite étale group schemes, Γ 7→ Γk

which preserves orders. It also preserves subgroups: check that if Γ′ is a subgroup of Γ,
then Γ′k is a sub affine group scheme of Γk.

In a moment we will prove the following facts in characteristic zero:

Proposition 3.5 (Cartier). Suppose k is a field of characteristic 0.

(i) Every Hopf algebra over k is reduced (“Cartier’s Theorem”)

(ii) Every finite flat group scheme over k is finite étale.

(iii) If k is algebraically closed then taking k-points is an equivalence of categories

finite flat group schemes over k
'→ finite abelian groups, G 7→ G(k)

with inverse Γ 7→ Γk; orders on each side are the same.

Proof. (ii) Since k is a perfect field, a finite k-algebra is étale if and only if it is reduced.
So this follows from (i). We will prove (i) later.

(iii) Now assume k is also algebraically closed, and let G = SpecA be a finite étale
group scheme over k. Since A is finite étale over k, it is isomorphic to a product of a
number of copies of k; these copies clearly correspond to the k-algebra homomorphisms
A→ k. In other words, the homomorphism of k-algebras

A −→ kG(k), a 7→
∑

f∈G(k)

f(a)δf

is an isomorphism. But by the very definition of the Hopf algebra structure on the right,
it is also a map of Hopf algebras (Check!), and so G(k)

k

'→ G.

Definition 3.6. A p-divisible group (or Barsotti–Tate group) of height h over a Noethe-
rian ring k is a sequence of affine groups schemes G1, G2, G3, . . . over k, together with
a morphism in : Gn → Gn+1 for each n ≥ 1, satisfying the following for each n ≥ 1:

(i) Gn is finite flat of order pnh;

(ii) the morphism in is injective and has image Gn+1[pn].

In other words, up to identifying Gn with its image in Gn+1, a p-divisible group is a
tower of affine group schemes

G1 ⊂ G2 ⊂ G3 ⊂ G4 ⊂ · · ·

such that Gn = Gn+1[pn] for all n ≥ 1, together with the condition that Gn is finite flat
of order pnh.

Example 3.7. The tower µp,k ⊂ µp2,k ⊂ µp3,k ⊂ · · · is a p-divisible group of height 1.

7If k is an algebraically closed field of any characteristic then, as Thomas pointed out, this functor
is an equivalence of categories by the proof of part (iii) of the next proposition.
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Example 3.8. (p−1Z/Z)h
k
⊂ (p−2Z/Z)h

k
⊂ · · · is a p-divisible group of height h,

denoted by (Qp/Zp)h
k
.

Warning: Up to isomorphism, this p-divisible group can also be written as (Z/pZ)h
k

p−→
(Z/p2Z)h

k

p−→ · · · , where in = p : (Z/pnZ)h
k
→ (Z/pn+1Z)h

k
is the injection induced by

multiplication by p : Z/pn → Z/pn+1Z. It is easy to get muddled between these two
notations.

Important: If k is an algebraically closed field of characteristic 0, then this is (up
to isomorphism) the only p-divisible group of height h over k. (Proof: by the previous
proposition, we must classify towers of honest abelian groups G1 ⊂ G2 ⊂ · · · such that
Gn = Gn+1[pn] and #Gn = pnh; then elementary group theory shows Gn ∼= (Z/pnZ)h ∼=
(p−nZ/Z)h for all n)

Lemma 3.9. Let G1 ⊆ G2 ⊆ be a p-divisible group of height h over k.

(i) Gn = Gn+r[p
n] for any r ≥ 1 (by a trivial induction on r).

(ii) the multiplication map p : Gn+1 → Gn+1 lands inside Gn+1[pn] = Gn; i.e., there
exists a map jn

Gn+1
jn //

p

88
Gn = Gn+1[pn] ⊆ Gn+1

Proof. By taking points in every k-algebra R, and using the results from last time that
this is sufficient, we may assume that theGn are honest groups satisfyingGn = Gn+1[pn].
Then (i) is a trivial induction on r, and (ii) is obvious.

Note from part (ii) that associated to G there is also an inverse system of finite flat
group schemes

· · · j3−→ G3
j2−→ G2

j1−→ G1

Definition 3.10. Let G be a p-divisible group over an integral domain O with field of
fractions K having characteristic zero. Then the Tate module of G is

Tp(G) := lim←−
n

Gn(Kalg)

where we take the limit over the jn maps. The Tate co-module is Φp(G) = lim−→n
Gn(Kalg),

where the limit is taken over the inclusions G1(Kalg) ⊂ G2(Kalg) ⊂ · · ·

Lemma 3.11. The Tate module and co-module have the following properties:

(i) Tp(G) is a free Zp-module of rank h, such that Tp(G)/pn = Gn(Kalg).

(ii) Φp(G) ∼= Tp(G)⊗Zp Qp/Zp ∼= (Qp/Zp)h, and Φp(G)[pn] = Gn(Kalg).

(iii) Tp(G) ∼= HomZp(Qp/Zp,Φp(G))

Proof. G⊗k K is a p-divisible group over K of height h (see Remark 6.1 later for some
comments on base changing p-divisible groups), hence ∼= (Qp/Zp)h

Kalg by the previous
example.
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It follows that there are compatible isomorphisms Gn(Kalg) ∼= (Z/pnZ)h; in this
description jn : Gn+1(Kalg) → Gn(Kalg) is exactly the usual projection map, and in is
multiplication by p. So Tp(G) ∼= lim←−n(Z/pnZ)h = Zhp , and Tp(G)/pn = (Z/pnZ)h.

Similarly, Φp(G) = lim−→n
(Z/pnZ)h = (Qp/Zp)h, and Φp(G) = (p−nZ/Z)h ∼= (Z/pnZ)h =

Gn(Kalg).

Corollary 3.12. Tp(G)⊗Zp Qp is an h-dimensional p-adic Galois representation of K.

Proof. More precisely: we mean that Tp(G)⊗Zp Qp is an h-dimensional Qp-vector space,
equipped with a continuous linear action of GalK := Gal(Kalg/K). The first part of the
previous lemma shows that it is an h-dimensional Qp-vector space.

Any K-algebra automorphism σ : Kalg → Kalg induces a group automorphism
σ
Kalg : Gn(Kalg) → Gn(Kalg) for all n ≥ 1. Taking the limit over n defines a Zp-linear

automorphism σTp(G) : Tp(G)→ Tp(G). Tensoring by Qp defines the action of GalK on
Tp(G)⊗Zp Qp.

One of the main results to prove in the course is the following:

Theorem 3.13 (Hodge–Tate decomposition of a p-divisible group). Suppose that O
is a complete discrete valuation ring of mixed characteristic, with perfect residue field;
let K denote the fraction field. Then there is an isomorphism, as finite dimensional
Qp-representations of GalK ,

Tp(G)⊗Zp Q̂
alg
p
∼= tangent⊕ cotangent space of G,

where Q̂alg
p denotes the p-adic completion of the algebraically closure of Qp, and the right

side still needs to be defined.

End of Lecture 4

4 The formal group and tangent space of a p-divisible

group

Idea: Let G be a p-divisible group over a ring O, and write Gn = SpecAn for each
n ≥ 1. Then

· · ·� A2 � A1

is an inverse system, with surjective transition maps, of Hopf algebras over O. The
formal group associated to G is

A := lim←−
n

An

This is a O-algebra equipped operators

µ := lim←−µn : A → A⊗̂OA := lim←−
n

An⊗OAn, ε := lim←−
n

εn : A → O, ι := lim←−
n

ιn : A → A

which satisfy the axioms for a Hopf-algebra, i.e., it is a type of “continuous Hopf algebra”
To make this part of a satisfactory theory, it is best to assume that all rings occurring

are complete, Noetherian, and local.
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Remark 4.1 (Reminders on complete local rings). We recall some results about com-
plete, Noetherian, local rings.

Let O be a Noetherian local ring; recall that O is said to be complete if and only if the
canonical map O → lim←−rO/m

r is an isomorphism, where m ⊆ O denotes the maximal
ideal. If this is true then many other objects associated to O are also complete:

(i) any finitely generated O-module M is also complete, in the sense that M
'→

lim←−rM/mrM (the key to proving this is the Artin–Rees Lemma);

(ii) in particular, if I ⊆ O is an ideal then O/I is also a complete Noetherian local
ring;

(iii) and the power series ring O[[X1, . . . , Xd]] is also a complete Noetherian local ring,
with maximal ideal m + 〈X1, . . . , Xd〉.

For simplicity, we will use in this section the non-standard notation O -c. alg to mean
the category of complete Noetherian local O-algebras with the same residue field as O
(i.e., the canonical map O/m → A/mA is an isomorphism; also note that “a local O-
algebra C” is not just a O-algebra which is a local ring; the additional property that
mC ⊆ mC must be satisfied; for example, Qp[[T ]] is not a local Zp-algebra!). The main
example is O[[X1, . . . , Xd]], or a quotient of this O-algebra.

Now let O be a complete Noetherian local ring, and let A,B ∈ O -c. alg. Then we
define their completed tensor product

A⊗̂OB := lim←−
r

A/mr
A ⊗O B/mr

B

Example 4.2. O[[X1, . . . , Xc]]⊗̂OO[[Y1, . . . , Yd]] ∼= O[[X1, . . . , Xc, Y1, . . . , Yd]].

Lemma 4.3. O -c. alg is closed under ⊗̂O.

Proof. Let A, B be two such O-algebras. Pick generators x1, . . . , xc for the maximal
ideal of A, and generators y1, . . . , yd for the maximal ideal of B. Then the O-algebra
homomorphisms

O[[X1, . . . , Xc]]→ A, Xi 7→ xi O[[X1, . . . , Xd]]→ A, Yi 7→ yi

are surjective since A and B have the same residue field as O. So we obtain surjections

O[[X1, . . . , Xc]]/(m, X1, . . . , Xc)
r⊗OO[[Y1, . . . , Yd]]/(m, Y1, . . . , Yd)

r −→ A/mr
A⊗kB/mr

B

for each r, and in letting r →∞ these give a surjection

O[[X1, . . . , Xc, Y1, . . . , Yd]] −→ A⊗̂kB

Since the left is a complete Noetherian local O-algebra with the same residue field as
A, the same is true of the right side.

Definition 4.4. A connected (= local) formal group over O is a “Hopf algebra in the
category O -c. alg”. In other words, it is data (A,µ, ε, ι) where A is a complete Noethe-
rian local O-algebra with the same residue field as O, and homomorphisms of O-algebras
µ : A → A⊗̂OA, ε : A → O, and ι : A → A which satisfy the usual rules for a Hopf
algebra after replacing ⊗k by ⊗̂O everywhere.
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Example 4.5. The additive formal group Ĝa,O over O is O[[X]], with operators

µ : O[[X]]→ O[[X,Y ]] = O[[X]]⊗̂OO[[Y ]], X 7→ X + Y

ε : O[[X]]→ O,
∑
i≥0

anX
n 7→ a0

ι : O[[X]]→ O[[X]], X 7→ −X

Check that the axioms are satisfied! It is exactly the same as for the additive group
scheme Ga. Indeed, it is its X-adic completion.

Example 4.6. The multiplicative formal group Ĝm,O over O is O[[X]], with operators

µ : O[[X]]→ O[[X,Y ]] = O[[X]]⊗̂OO[[Y ]], X 7→ X + Y −XY

ε : O[[X]]→ O,
∑
i≥0

anX
n 7→ a0

ι : O[[X]]→ O[[X]], X 7→ uniquely determined power series ι(X) s.t. µ(X, ι(X)) = X

i.e., ι(X) = 1 − (1 −X)−1. Again, check that the axioms are satisfied. After applying
the change of variable X ↔ t−1 it is the completion of the multiplicative group scheme.

Example 4.7. If A is a usual Hopf algebra over O which is local and finitely generated
as an O-module, then A is a connected formal group. Indeed, the finite generation
hypothesis implies that A⊗̂OA = A⊗O A.

Almost all the theory we developed for Hopf algebras/affine group schemes works
verbatim for connected formal groups over O; in particular:

(i) if ψ : A → B is a morphism of connected formal groups (i.e., map of O-algebras
compatible with µ, ε, ι in the obvious way), then the associated kernel is the
connected formal Hopf algebra B/ψ(Ker εA)B.

(ii) The set of morphisms Hom(A,B) is an abelian group, and so there is a multipli-
cation morphism of connected formal groups

[n] = nA := idA + · · ·+ idA : A→ A

for each n ≥ 0, whose associated kernel is A[n] := A/[n](Ker εA)A is the n-torsion.

Definition 4.8. A morphism ψ : A→ B of connected formal groups is called an isogeny
if and only if it is injective and makes B into a finite free A-module.

A connected formal group A is called p-divisible if and only if the multiplication map
[p] : A→ A is an isogeny.

Lemma 4.9. Let ψ : A→ B be an isogeny.

(i) Then the associated kernel B/ψ(Ker εA)B is a finite free local Hopf algebra over
O, whose O-rank is rkAB.

(ii) If ψ′ : B → C is another isogeny, then ψ′ ◦ ψ : A → B is also an isogeny, and
rkAC = rkAB · rkC B.
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Proof. (i): According to the previous example and comments, B/ψ(Ker εA)B inherits
the structure of a connected formal Hopf algebra, so we only need to show that it is a
finite free O-module.

Let b1, . . . , bm be a basis for B as a free A-module; we will show that their images
b1, . . . , bm in B/ψ(Ker ε)B form a basis for B/ψ(Ker ε)B as an O-module. This will
complete the proof.

Generation: If b ∈ B then we may write b =
∑

i ψ(ai)bi ≡
∑

i ψ(ε(ai))bi =
∑

i ε(ai)bi
for some ai ∈ A, whence the generation is clear.

Linear independence: If
∑

i λibi = 0, where λi ∈ O, then
∑

i λibi ∈ ψ(Ker ε)B, so
it easily follows that there exist a1, . . . , am ∈ Ker εA such that

∑
i λibi =

∑
i ψ(ai)bi.

Then
∑

i ψ(λi− ai)bi = 0, and so from the assumption that bi is a basis we deduce that
λi − ai = 0 for all i; but A = O ⊕Ker εA, so λi = 0 = ai for all i.

(ii): This is easy algebra: B is a free A-module and C is a free B-module, so C is a
free A-module, and taking ranks is multiplicative.

Instead of starting – but not finishing – the proof of the upcoming proposition as we
did in lecture 5, we now jump to the beginning of lecture 6.

Recall the situation from last time: O is a complete Noetherian local ring, p > 0 is
a prime number, and we studied connected formal groups (A,µ, ε, ι), means that A is
a complete Noetherian local O-algebra, and µ : A → A⊗̂OA, etc., satisfying the usual
Hopf algebra rules, always replacing tensor products by completed tensor products. This
was called p-divisible if and only if the morphism [p] : A→ A is an isogeny (i.e., injective
and A is a free module over its image).

We should also introduce the following standard terminology: A finite flat group
scheme H = SpecB over O is called connected if and only if B is a local ring; a p-
divisible group G = (G1 ⊂ G2 ⊂ · · · ) over O is called connected if and only if each Gn
is connected.

Given a connected, p-divisible group G = (G1 ⊂ G2 ⊂ · · · ), we associate to it the
connected formal group is A := lim←−nAn, where we have written G = SpecAn, with An
being finite flat, local, Hopf algebras over O. (Commutative algebra implies that that A
really is a complete Noetherian local O-algebra, while the structure maps µ := lim←−n µn,
ε := lim←−n εn, and ι := lim←−n ιn satisfy the Hopf algebra rules since the same is true for
each n.)

Definition 4.10. With G a connected, p-divisible group over O, and A as above:

(i) the dimension of G is defined to be dimA − dimO (these dims denote Krull
dimension).

(ii) For any (probably only finitely generated) O-module M , the cotangent and tangent
spaces of G with values in M are defined to be

t∗G(M) := Ker ε/Ker ε2 ⊗OM, tG(M) := HomO(Ker ε/Ker ε2,M).

Note: more explicitly, Ker ε/Ker ε2 is just lim←−n Ker εn/Ker ε2
n.

Example 4.11. Let O have residue characteristic p, and let G := µp∞ := (µp ⊂ µp2 ⊂
· · · ), which is a connected p-divisible group of height 1. Then the associated connected
formal group is

A = lim←−
n

O[t]/(tp
r − 1) ∼= lim←−

n

O[X]/((X + 1)p
r − 1) ∼= O[[X]] = Ĝm,O,
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where the first isomorphism is the change of variable t↔ X + 1 and the second isomor-
phism is a well-known isomorphism from commutative algebra (which uses O having
residue characteristic p).

Since ε : O[[X]]→ O is the usual projection, we see that

Ker ε/Ker ε2 = XO[[X]]/X2O[[X]] ∼= O;

hence, for any O-module M , we have

t∗G(M) = XO[[X]]/X2O[[X]]⊗OM ∼= M

tG(M) := HomO(XO[[X]]/X2O[[X]],M) ∼= HomO(O,M) = M

The following is the main result of the section, setting up a correspondence between
connected p-divisible groups and p-divisible connected formal groups:

Proposition 4.12. Let O be a complete Noetherian local ring whose residue field has
characteristic p. Then there is a one-to-one correspondence (even an equivalence of
categories) between

connected p-divisible groups G = (G1 ⊂ G2 ⊆ · · · )

and

p-divisible connected formal groups (A,µ, ε, ι)

This is given by

G 7→ A := lim←−
n

An

and

A 7→ (G1 ⊂ G2 ⊂ · · · ) where Gn := SpecA/ψn(Ker ε)A.

Proof. ↑: Let A be a p-divisible connected formal group over O. By inductively applying

the previous lemma to A
[p]−→ A

[p]−→ · · · , we deduce that An := A/[pn](Ker εA)A is a
finite free local O-algebra of rank dn, where d := rkO A/[p](Ker εA)A; since A1 is a finite
flat local Hopf algebra over O, the “Corollary” to Cartier’s Theorem (which we prove
next time) shows that d is a power of p. Also, the A1, A2, . . . are successive Hopf algebra
quotients of A which satisfy, by construction,

An = An+1/[p
n](Ker εAn+1)An+1

i.e., setting Gn := SpecAn, we see that G1 ⊆ G2 ⊆ · · · is a tower of finite flat group
schemes over O of ranks dn satisfying Gn = Gn+1[pn] for all n ≥ 1, i.e., a p-divisible
group!

(Side remark since it is being used repeatedly, in case it wasn’t clear: If H = SpecB
is an affine group scheme over some ring, then we defined H[m] := Ker[m] to be the
kernel of the morphism [m]; according to the definition of kernels, this means that
H[n] = SpecB/[n](Ker εB)B.)

↓: Now we must go in the other direction. Fix a connected p-divisible group G of
height h, and write Gn = SpecAn (so each An is a local, finite flat Hopf algebra over
O of rank pnh). Then A := lim←−nAn is local, Noetherian, and complete (by standard
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commutative algebra), and the Hopf algebra structures on each An clearly give A the
structure of a connected formal group over O, e.g.,

µ = lim←−
n

µn : A→ lim←−
n

An ⊗O An = lim←−
n

lim←−
r

An/m
rAn ⊗AnmrAn = A⊗̂OA.

Now we use that Gn = Gn+r[p
n] for all n, r ≥ 1; in terms of Hopf algebras this means

that An = An+r/[p
n](Ker εAn+r)An+r, and so by taking the limit over r we deduce

A/[p]n(Ker ε)A = An

i.e., this is inverting the previous construction A 7→ G. However, it remains to check
that the connected formal group A = lim←−nAn is p-divisible; this is perhaps the trickiest
part of the proof, but also not so important for us.

We must first show that [p] : A → A is injective. Recall from the last section the
commutative diagram

Gn+1
jn //

p

88
Gn = Gn+1[pn] ⊆ Gn+1

This corresponds to a diagram of Hopf algebras:

An+1 An = An+1/[p
n](Ker εn+1)An+1

jnoo An+1
oooo

[p]

hh

By counting ranks, one can check that jn : An → An+1 is injective as a map of algebras
(this is a little tricky and we are skipping over the details). So lim←−n jn : A → A is
injective; but the diagram shows that lim←−n jn = [p] : A→ A.

Next we must show that A is a free module over its subring [p](A): the rank will
be ph, where h is the height of G. Let b1, . . . , bph ∈ A be elements whose images in

A1 = A/[p](Ker ε)A form an O-basis for A1 (recall this is free of height ph). We will
show that these elements give a basis.

Generation: Given a ∈ A, we may write a ≡
∑

i a
(0)
i bi + z for some a

(0)
i ∈ O

and z ∈ [p](Ker ε)A. Then write z =
∑

i[p](a
(1)
i )bi + z(1) for some a

(1)
i ∈ Ker ε and

z1 ∈ [p](Ker ε2)A. Repeating the argument, we get a =
∑

i[p](a
(0)
i + a

(1)
i + · · · )bi, where

the infinite sums converge through completeness.
Linear independence: By taking lim←−n, it is enough to show that the images b1, . . . , bph

in of b1, . . . , bph in An = A/[pn](Ker ε)A are linearly independent over [p](An). Note that
these elements are generators by the previous paragraph. But [p](An) = jn−1(An−1) has
rank ph(n−1) since jn−1 is injective. Thus any relation among b1, . . . , bph would cause

the O-rank of An to be < pnph(n−1) = phn, which is a contradiction.

Remark 4.13. (which we may prove at the end of the course): Suppose that A is a
connected formal group over O. If O has residue characteristic p and A is p-divisible,
then it can be shown that A is automatically “formally smooth” as a O-algebra, which
means concretely that there exists an O-algebra isomorphism A ∼= O[[X1, . . . , Xd]].

In particular, if G is a connected p-divisible group over O and A := lim←−nAn is its
associated connected formal group, then we showed in the previous proposition that A
is p-divisible and so we deduce:
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(i) A ∼= O[[X1, . . . , Xd]] where d is the dimension of G;

(ii) Ker ε ∼= (X1, . . . , Xd) and so Ker ε/Ker ε2 is a free O-module of rank d, with basis
given by the classes of X1, . . . , Xd;

(iii) if M is an O-module, there are therefore non-canonical isomorphisms of O-modules
tG(M) ∼= t∗G(M) ∼= Md.

5 The structure of finite flat group schemes over
complete local rings

Over a complete Noetherian local ring, we have now have two important classes of
finite-flat group schemes and p-divisible groups:

(i) connected – these can be studied using the previous proposition.

(ii) étale – these are typically easy and explicit, reducing to Galois theory.

The goal of this section is to analyse further these two classes, and show that any
finite flat group scheme/p-divisible group can be built out of them.

We start by proving the Cartier isomorphism, which we skipped before:

Proposition 5.1 (“Cartier’s Theorem”). Suppose k is a field of characteristic 0. Then
every Hopf algebra over k is reduced.

Proof. We will only prove the result in the case that the Hopf algebra is finite dimensional
over k, but it is not too hard to modify the proof to prove the full result. We will actually
start by proving some more general statements:

For any Hopf algebra (A,µ, ε, ι) over any ring k, we may define a k-linear map
ρ : A→ Ker ε/Ker ε2 by ρ(a) := a− εa mod Ker ε2, and then consider the k-linear map

δ : A
µ−→ A⊗k A

ρ−→ A⊗k Ker ε/Ker ε2

Directly from the axioms of a Hopf algebra, one can check that ∂ is a derivation on the
k-algebra A (i.e., it is k-linear and satisfies ∂(ab) = a∂(b) + b∂(a) for all a, b ∈ A).

Now suppose that k is a field and that A is Noetherian. Then Ker ε/Ker ε2 is a finite
dimension k-vector space, and we pick a basis t1, . . . , td of it; here t1, . . . , td ∈ Ker ε and
the overline denotes mod Ker ε2. Let ei : Ker ε/Ker ε2 → k be the k-linear maps which
form the dual basis, i.e., ei(tj) = δi,j .

Since ∂ is a derivation, so is

∂i : A
∂−→ A⊗k Ker ε/Ker ε2 idA⊗ei−−−−→ A⊗k k = A,

and one checks directly that ∂i(tj) ≡ δi,j mod Ker ε. By now repeatedly applying the
Leibnitz rule, one checks the following: if α1, . . . , αd and β1, . . . , βd are non-negative
integers satisfying

∑
i αi =

∑
i βi, then

∂α1 · · · ∂αd
d (tβ11 · · · t

βd
d ) ≡

{
α1! · · ·αd! mod Ker ε αi = βi for all i = 1, . . . , n,

0 mod Ker ε else

Now we specialise to the case at hand: we will prove that if k is a field of characteristic
zero and A is a finite dimensional Hopf algebra over k, then A is reduced (the result



p-divisible groups 27

holds without assuming that A is finite dimensional, but the proof is a little trickier and
we do not need it). After replacing k by kalg and A by A ⊗k kalg we may assume k is
algebraically closed.

It easily follows from the existence of all these functionals on A that the surjection

k[X1, . . . , Xd]/(X1, . . . , Xd)
n → A/Ker εn, Xi 7→ ti

cannot have any kernel (the coefficients in the relation would be detected by suitable
functionals), and so it is an isomorphism for all n ≥ 1. But since A is finite dimensional
over k, then there is no way that the dimension of A/ kern can be dn for all n ≥ 0, unless
it was the case that d = 0, i.e., we have concluded that Ker ε = Ker ε2.

Now we want to use this to show that m = m2 for every maximal ideal m of A. Let
π : A → A/m = k be the projection, which we can think of as a point π ∈ G(k). Then
there is a homomorphism of k-algebras

τ : A
µ−→ A⊗k A

idA⊗π−−−−→ A⊗k A/m = A,

and the induced map τR : G(R)→ G(R) is translation by π for any k-algebra R. Since
this is a bijection for any R, it is easy to check that τ is an automorphism of A and that
τ(Ker ε) = m (since Ker ε corresponds to 0 ∈ G(k) and m corresponds to π ∈ G(k)).
Since we have already shown Ker ε = Ker ε2, we see that also m = m2.

Many different argument now show that A is reduced. For example, since A is a finite
dimensional algebra over k, it is isomorphic to

∏
iAi for finitely many finite-dimensional

local k-algebras Ai. From what we have shown about maximal ideals, it follows that
mi = m2

i , where mi is the maximal ideal of Ai. By Nakayama therefore mi = 0, whence
Ai is a field. So A is a product of fields, hence reduced.

End of lecture 6.

Corollary 5.2. Let O be a complete Noetherian local ring and G = SpecA a connected,
finite flat group scheme over O. Then

(i) If O has residue characteristic zero then G is trivial, i.e., = 0O.

(ii) If O has residue characteristic p > 0 then the order of G is a power of p.

Proof. Let k = O/m, so that A/mA is a finite flat Hopf algebra over the field k.
If char k = 0 then we have already seen in an earlier lecture that Cartier’s result

forces A/mA to be étale over k, hence to be a finite product of separable extensions of
k. But A/mA is local and k → A/mA has a section, so the only option is A/mA = k.
Commutative algebra (e.g., Nakayama’s lemma) then implies that A = O.

Next suppose that k has characteristic p. After replacing A by A/mA (whose k-rank
is the same as the O-rank of A), we may as well suppose that O = k is a field. Let
φ : A → A a 7→ ap be the absolute Frobenius. It is easy to check that φn(Ker ε)A is
a Hopf ideal of A, and it has to vanish for n � 0 since Ker ε is nilpotent (since A is a
local, finite dimensional algebra). By a non-trivial induction on n (e.g., using existence
of quotient group schemes, though a direct argument is also possible), we will restrict
ourselves to the case that φn(Ker ε) = 0. This means that we have a surjection

k[X1, . . . , Xd]/(X
p
1 , . . . , X

p
d) −→ A, Xi 7→ ti,
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and the proof will be complete if we show it is an isomorphism. But this easily follows
from the existence of the derivations constructed in the previous proof (which required
no assumptions on k).

The next goal is to show that any finite flat group scheme over O decomposes into
an étale piece and a connected piece; to make the notion of “decomposes” precise, we
need the following definition:

Definition 5.3. The following definitions really belong to the earlier sections on the
general theory of affine group schemes, but we didn’t need them until now:

A morphism G = SpecA → F = SpecB of affine group schemes (over any ring) is
said to be surjective if and only if the corresponding map of rings B → A is faithfully
flat (recall that this means that (1) A→ B is flat and (2) pB 6= B for every prime ideal
p ⊆ A, i.e., G→ F is surjective as a map of sets of prime ideals; in particular, a map of
local rings is faithfully flat if and only if it is flat.)

A sequence

0→ H → G→ F → 0

is then said to be exact if and only if the sequence 0→ H → G→ F is left exact (recall
we defined this to mean that H → G is injective and has image Ker(G → F )) and in
addition G→ F is surjective.

The following trick, by counting ranks, is useful: If H,G,F are all finite flat, and
0→ H → G→ F is left exact, then the following are equivalent:

(i) G→ F is surjective;

(ii) #G = #H ·#F .

(Idea of proof: let I = (Ker εB)A ⊆ A be the Hopf ideal defining Ker(G→ F ), so that
H ∼= SpecA/I, and consider the morphism

A⊗B A −→ A⊗k A/I, a1 ⊗ a2 7→ a1µ(a2) mod A⊗k I.

This is an isomorphism if and only if (i) or (ii) holds.)

Example 5.4. If G = (G1 ⊂ G2 · · · ) is a p-divisible group (over any ring), then we

constructed jn : Gn+1 → Gn such that the composition Gn+1
jn−→ Gn ⊆ Gn+1 is [p]. So

the sequence 0 → G1 → Gn+1
jn−→ Gn is left exact. By counting ranks we deduce that

jn is surjective (which was used in the proof of the main proposition of the last section).

Remark 5.5. First we make some comments from commutative algebra on the structure
of O-algebras A which are finitely generated as a module.

(i) A is isomorphic, as an O-algebra, to a finite product
∏
iAi where each Ai is a

complete Noetherian local O-algebra (also finitely generated as a module). More

naturally, this decomposition can be written as A
'→
∏

mAm, where m runs over
the finitely many maximal ideals of A, and Am is the localisation of A at m.

(ii) A is finite étale over O if and only if the following conditions all hold: A is flat
over O and, for each i, the maximal ideal of Ai is mAi and the finite field extension
A/mAi ⊇ O/m is separable.
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Lemma 5.6. Let A be a O-algebra which is finite flat; then A contains a unique subal-
gebra Aét (the “maximal étale subalgebra”) with the following properties:

(i) Aét is finite étale over O;

(ii) if R is an étale O-algebra, then any O-algebra homomorphism R → A has image
inside Aét.

Moreover, A is flat over Aét (even faithfully flat), and if O is a perfect field then the
composition Aét → A→ Ared is an isomorphism.

Proof. Using the decomposition A =
∏
iAi, it is easy to reduce to the case that A

is local. Then K := A/mA ⊇ O/m =: k is a finite field extension, and we let ks be
the separable closure of k inside K; by standard Galois theory (Thm of the Primitive
Element) it is possible to write ks = k(α) for some α ∈ ks; let f(X) ∈ k[X] be its
minimal polynomial and note that f(X), f ′(X) are coprime (since ks/k) is a separable
extension.

Let f̃(X) ∈ O[X] be any monic lift of f(X). By Hensel’s Lemma, there exists a
unique lift α̃ ∈ A of α which is a root of f̃(X), and so we let Aét ∼= O[X]/f̃(X) be the
O-subalgebra of A generated by α̃. We need to check that this satisfies all the desired
properties:

Firstly, Aét is a free O-algebra satisfying Aét/mAét = k[X]/f(X) = ks, so Aét is
finite étale over O.

Let R be any étale O-algebra and R → A any homomorphism. Then R/mR is a
finite product of separable field extensions of k, so it is easy to see that the image of
R/mR inside K lies inside ks = Aét/mAét. Follows that the image of R inside A lies in
Aét.

Next, some tricky commutative algebra which we omit (“fibral flatness theorem”:
see the section “Criteria for flatness’ in the Stacks Project if you are interested) proves
the following: if O → R′ → R′′ are maps of local rings such that O → R′′ and R′/mR′ →
R′′/mR′′ are flat, then R′ → R′′ is flat; apply this to R′ = Aét and R = A to deduce
that Aét → A is flat.

Finally, if O is a perfect field (so m = 0 and O = k), then we can take f̃(X) = f(X),

whence Aét = k[X]/f(X) = ks
'→ A/mA (note that ks = A/mA since k is perfect).

The following proposition defines the “connected–étale sequence” of a finite flat
group scheme:

Proposition 5.7. Let G = SpecA be a finite flat group scheme over O. Then:

(i) Aét is a sub Hopf algebra of A; write Gét := SpecAét (called “the étale part of G”)

(ii) the affine group scheme G0 := Ker(SpecA → SpecAét) over O is finite flat and
connected (called “the connected part of G”)

(iii) the sequence 0→ G0 → G→ Gét → 0 is exact.

(iv) If O is a perfect field then this sequence naturally splits: G ∼= G0 ×Gét

Proof. (i): It is easy to check that (A⊗OA)ét = Aét⊗OAét. Thus the universal property
of the maximal étale subalgebra implies that Aét is preserved by µ, ι, ε.
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(ii): By definition G0 = SpecA/(Ker ε ∩ Aét)A. Write A =
∏n
i=1Ai as a finite

product of complete local Noetherian O-algebras, and let ei ∈ A be the associated
idempotents. By construction Aét =

∏
iA

ét
i , and so e1 ∈ Aét.

Since O is local, its only idempotents are zero and 1; since e1, . . . , en is a complete
set of idempotents for A, it follows that ε(ei) = 1 for exactly one index – cal it i = 1
–, and vanishes for all others. Thus Ker ε ∩Aét contains all the idempotents except for
the index i = 1.

In particular, Ker ε 3 e2, . . . , en; since A = O ⊕ Ker ε it follows that O is a direct
summand of A1, and so A1 has residue fieldO/m. Therefore Aét

1 = O and so Ker ε∩Aét
1 =

0. This implies that Ker ε ∩ Aét = (e2, . . . , en) and so A/(Ker ε ∩ Aét)A = A1, which is
local and finite flat over O, as required.

(iii): Since we proved in the previous lemma that Aét → A is faithfully flat, there is
nothing more to do to prove this.

(iv): We must find a sub affine group of G which maps isomorphically to Gét, i.e.,
a Hopf ideal I ⊆ A such that Aét → A → A/I is an isomorphism. By the previous
lemma the ideal I =

∏
imAi (which is clearly a Hopf ideal since it is the nilradical of A)

works.

So, to any finite flat group scheme G over O, we can (functorially) associate new
finite flat group schemes G0, Gét, which are respectively connected and étale. These
have the following universal properties:

• any morphism from a connected group scheme to G factors uniquely through G0;

• any morphism from G to an étale group scheme factors uniquely through Gét.

(These follow from the characterising property of Aét, together with the following easy
observation which you may wish to check: the only morphism from a connected group
scheme to an étale group scheme is zero.)

Note that if O has residue characteristic 0 then the earlier corollary to Cartier’s
theorem implies that Gét = G and G◦ = 0; so the interesting case really is when O has
residue characteristic p > 0.

These functors behaves well with respect to kernels and surjections:

Lemma 5.8. Let ? denote ◦ or ét.

(i) If 0 → H → G → F is a left exact sequence of finite flat group schemes over O,
then so is 0→ H? → G? → F ?.

(ii) If G→ F is a surjection of finite flat group schemes over O, then so is G? → F ?.

(iii) If 0→ H → G→ F → 0 is an exact sequence of finite flat group schemes over O,
then so is 0→ H? → G? → F ? → 0.

Proof. By definition of an exact sequence, (i)&(ii)⇒(iii).
(ii): Suppose that G = SpecA → F = SpecB is surjective, and let’s prove the

same about G◦ → F ◦. Algebraically we have the following situation: B =
∏m
j=1Bj →

A =
∏n
i=1Ai is faithfully flat, where the Ai and Bj are finite flat local O-algebras, and

G◦ → F ◦ is represented by A1 → B1 (without loss of generality, by reindexing), which
we must prove is flat. But this is clear: we may write the faithfully flat A1-algebra
A1 ⊗A B =

∏
j∈S Bj for some set S ⊆ {1, . . . ,m} containing 1; thus B1 is a direct

summand of a flat A1-algebra, hence is flat itself.
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With the same surjecitivty situation, we have a faithfully flat map Aét → Bét → B
(since it is equal to Aét ↪→ A ↪→ B, which is a composition of faithfully flat maps hence
is faithfully flat) in which the second arrow is faithfully flat; it follows that the first
arrow is also faithfully flat.

(i): Now suppose that 0→ H → G→ F is a left exact sequence of finite flat group
schemes over O. Then H◦ → G◦ is injective, and the composition H◦ → G◦ → F ◦ is
zero, so H◦ ⊆ Ker(G◦ ⊆ F ◦). Conversely, Ker(G◦ → F ◦) is a connected (since it is a
subgroup of the connected G◦) sub affine group scheme of H, and hence it is contained
in H◦ (by universal property of H◦).

It remains to prove that 0→ H ét → Gét → F ét is also left exact; this is the trickiest
assertion, and we will only sketch the proof under the additional assumption that G→ F
is surjective (so that 0 → H → G → F → 0 is exact). Then we have a commutative
diagram

0

��

0

��

0

��
0 // H◦ //

��

G◦ //

��

F ◦ //

��

0

0 // H //

��

G //

��

F //

��

0

0 // H ét //

��

Gét //

��

F ét //

��

0

0 0 0

in which each column is exact (by the connected–étale exact sequence), the central row
is exact (by assumption), and the top row is exact (by what we have already proved).
By the “3 × 3 lemma”, it follows formally that the bottom row is exact (of course, for
this to work we need to know that exact sequence of affine group schemes, as we have
defined them, satisfy the same types of formalism as exact sequences of ordinary groups;
this essentially follows by taking points in all O-algebras.)

End of lecture 7.

Last time we introduced the connected and étale parts of a finite flat group scheme
over O, and saw that they behaved well under short exact sequences; from this we can
deduce that the connected and étale parts of a p-divisible group are well-defined:

Corollary 5.9. If G = (G1 ⊂ G2 ⊂ · · · ) is a p-divisible group over O, then so are
G◦ := (G◦1 ⊂ · · · ), and Gét := (Gét

1 ⊂ · · · ); they are called the connected and étale parts
of G.

Proof. Let ? denote ◦ or ét. Firstly, the previous lemma implies that G?
n+1[pn] =

Gn+1[pn]? = G?
n. Secondly, from the short exact sequence 0→ G1 → Gn+1

jn−→ Gn → 0

we obtain another short exact sequence 0→ G?
1 → G?

n+1
jn−→ G?

n → 0, whence the mul-
tiplicativity of the ranks (and a trivial induction on n) implies that #G?

n+1 = (#G?
1)n.

Finally, the short exact sequence 0→ G◦1 → G1 → Gét
1 → 0 shows that #G?

1 is an order
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of p. Combining these observations we see that G? satisfies all the axioms of a p-divisible
group.

6 Points of a p-divisible group

Remark 6.1 (Base change). We now make some side comments on base changing p-
divisible groups – this is straightforward, but we will often use it.

If G = SpecA is an affine group scheme over any ring k, and k′ is a k-algebra, then
it is very easy to check that G⊗k k′ = Spec(A⊗k k′) is an affine group scheme over k′,
i.e., A⊗k k′ is a Hopf-algebra over k′. Base change has the following properties:

(i) If R is a k′-algebra, then G(R) = (G ⊗k k′)(R); this is the standard result from
commutative algebra that Homk -alg(A,R) = Homk -alg(A⊗k k′, R).

(ii) If 0 → H → G → F is a left exact sequence of affine group schemes over k, then
0→ H ⊗k k′ → G⊗k k′ → F ⊗k k′ is left exact over k′.

(iii) In particular, it follows that G[n]⊗k k′ = (G⊗k k′)[n].

(iv) If G is finite flat (resp. finite étale) over k, then so is G ⊗k k′ over k′ and it has
the same order.

If G = (G1 ⊂ G2 ⊂ · · · ) is now a p-divisible group of height h over k, it follows from
(iii) and (iv) that G⊗k k′ := (G1⊗k k′ ⊂ G2⊗k k′ ⊂ · · · ) is a p-divisible group of height
h over k′.

Now we really begin the section. O continues to be a complete Noetherian local ring,
with maximal ideal m, and G is a p-divisible group over O.

Definition 6.2. We want to define the R-points of G, where R is a complete local
O-algebra, in a way which takes topologies into account; for this to be reasonable we
need to assume that the set of mR-adic topological nilpotent elements of R is exactly
its maximal ideal mR, i.e., that for any x ∈ mR, there exists r � 0 satisfying xr ∈ mR

(Note: I made a mistake in class: we do not want to assume the existence of a single
value of r satisfying mr

R ⊆ mR for r � 0.)
We first put G(R/mrR) := lim−→n

Gn(R/mrR) for each r ≥ 1, and then define the
R-valued points of G to be

G(R) := lim←−
r

G(R/mrR)

Alternatively, writing Gn := SpecAn and putting A := lim←−nAn (which makes sense
even if G is not connected), we see that

G(R) = lim←−
r

lim−→
n

HomO-alg(An, R/m
rR) = ContHomO-alg(A, R)

where R has the mR-adic topology and A has the inverse limit topology (with each An
being given the mAn-adic topology).

Lemma 6.3. Points have the following basic properties:

(i) G(R) is a Zp-module.

(ii) The canonical map lim−→n
lim←−rGn(R/mrR) → lim←−r lim−→r

Gn(R/mrR) = G(R) is in-
jective and its image is G(R)tors.
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(iii) If G is étale then the previous map is an isomorphism, G(R) = lim−→n
Gn(R/mR),

and this is torsion.

(iv) If O has residue characteristic p and G is connected, then there exists a (non-
canonical) isomorphism of sets (of topological spaces if we are more careful)

G(R) ∼= mR ⊕ · · · ⊕mR, (d copies)

where d is the dimension of G.

Proof. (i): Each Gn(R/mr) is a Z/pnZ-module since Gn is pn-torsion. Hence G(R/mrR)
and G(R) are Zp-modules.

(ii): Each transition map Gn(R/mr) → Gn+1(R/mr) is injective since Gn ⊆ Gn+1;
so the canonical map is injective by general formalism of doubly-indexed systems. Re-
garding torsion, let s ≥ 1 and recall that the sequence

0→ Gs(R/m
rR)→ Gn+s(R/m

rR)
ps−→ Gn+s(R/m

rR)

is exact. Apply lim−→n
lim←−r to deduce that lim←−rGs(R/m

rR) is the ps-torsion of G(R). Now
take lim−→s

to prove the assertion.

(iii): Now suppose that G is étale over O. Thus An (the O-algebra underlying
Gn, as usual) is étale and so the “infinitesimal lifting criterion for étaleness” implies

that Hom(An, R/m
r+1)

'→ Hom(An, R/m
r)
'→ Hom(An, R/mR) for all r ≥ 1. General

formalism of doubly-indexed inverse limits then shows that the canonical map in (ii) is
an isomorphism, whence G(R) is torsion and has the claimed form.

(iv): If G is connected, then we studied its associated connected formal group
A := lim←−nAn in some detail in a previous section, and in Remark 4.13 mentioned that
there always exists a (non-canonical) isomorphism of O-algebras A ∼= O[[X1, . . . , Xd]].
Therefore

G(R) ∼= ContHomO-alg(O[[X1, . . . , Xd]], R) ∼= (mR)d

since such a continuous homomorphism is determined by sending X1, . . . , Xd to arbitrary
topologically nilpotent elements of R, and mR is precisely the set of such elements.

Example 6.4. Assume O has residue characteristic p, and let’s see the previous lemma
explicitly in the case G = µp∞,O. Then

µp∞,O(R) = lim←−
r

lim−→
n

µpn,O(R/mrR) = lim←−
r

lim−→
n

{x ∈ R/mrR× : xp
n

= 1}

= lim←−
r

1 + mR/m
rR

= 1 + mR,

and

lim−→
n

lim←−
r

µp∞,O(R/mrR) = lim−→
n

lim←−
r

{x ∈ R/mrR× : xp
n

= 1} = lim−→
n

{x ∈ R× : xp
n

= 1}

= p-power torsion in R×

= p-power torsion in 1 + mR,

as predicted by the previous lemma.
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The main result of the section is that the connected-étale sequence works well with
respect to points:

Proposition 6.5. Suppose that O has perfect residue field of characteristic p, and let R
continue to be a complete local O-algebra as above. Then the sequence of abelian groups

0→ G◦(R)→ G(R)→ Gét(R)→ 0

is exact.

Proof. Since 0→ G◦n → Gn → Gét
n → 0 is exact, and since the three operations “taking

points of an affine group scheme”, lim←−r, and lim−→n
preserve left exact sequences, the

sequence is certainly left exact. The non-trivial part is showing that G(R)→ Gét(R) is
surjective (which is not true at fixed levels n).

As usual, write Gn = SpecAn, with corresponding étale and connected pieces Aét
n ⊆

An � A◦n. Thus
Aét := lim←−

n

Aét
n ⊆ A := lim←−

n

An � A◦ := lim←−
n

A◦n

are the formal groups associated to Gét, G, and G◦ respectively. We need to prove that

ContHomO-alg(A, R)→ ContHomO-alg(Aét, R)

is surjective. We will prove that there exists a (non-canonical) isomorphism ofO-algebras

A ∼= Aét⊗̂OA◦ (whence there is a splitting A ∼= Aét⊗̂OA◦
id⊗ε−−−→ Aét of the inclusion

Aét ⊆ A, and so the surjectivity is clear).
Again using Remark 4.13 to pick an isomorphism A◦ ∼= O[[X1, . . . , Xd]], and picking

arbitrary lifts of the variables Xi to A, there is a splitting σ : A◦ ∼= O[[X1, . . . , Xd]]→ A
of the surjection A� A◦. Tensoring with Aét we obtain

inclus.⊗σ : Aét⊗̂OO[[X1, . . . , Xd]]→ A.

We must prove this is an isomorphism. Since everything is flat and complete, it is
enough to prove it is an isomorphism after applying ⊗Ok, where k is the residue field.
So from now on we replace O by k, and we consider

Aét[[X1, . . . , Xd]] = Aét⊗̂kk[[X1, . . . , Xd]]→ A.

This is easily checked to be an isomorphism by using the following purely algebraic
observations:

(i) the structure map k → Aét has a section ε : Aét → k, and there is a map
A → A◦ = k[[X1, . . . , Xd]] such that the composition Aét[[X1, . . . , Xd]] → A →
k[[X1, . . . , Xd]] is ε. (This map is by construction of σ.)

(ii) there exists a map A → Aét such that the composition Aét[[X1, . . . , Xd]] → A →
Aét is the canonical projection. (This map A → Aét is given by A = lim←−nAn →
lim←−nAn red

∼= lim←−nA
ét
n = Aét, where we use Lemma 5.6.)

End of lecture 8
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Corollary 6.6. Under the same conditions as the previous proposition, assume also
that R is normal and has algebraically closed fraction field. Then G(R) is a divisible
group.

Proof. By the previous proposition, we may assume that G is either connected or étale.

We will start with the étale case, which is an explicit calculation. We saw in the first
lemma of the section that G(R) = lim−→n

Gn(R/mR). Writing R/mR = K (which is an
algebraically closed field extension of k) and G′n = Gn ⊗k K, we have Gn(K) = G′n(K)
by our earlier remarks on points. But G′ = (G′1 ⊂ G′2 ⊂ · · · ) is an étale p-divisible
group over an algebraically closed field K, hence is isomorphic to (Qp/Zp)h

K
, where h

is he height of G. So then

lim−→
n

Gn(K) = lim−→
n

(pnZ/Z)h
K

(K) = (pnZ/Z)h = (Qp/Zp)h,

which is certainly a divisible group.

Now suppose instead that G is connected. Let A be its associated connected formal
group, and let f ∈ ContHomO-alg(A, R) be an R-valued point of G. We must show that
f is divisible by p, i.e., find f ′ ∈ ContHomO-alg(A, R) such that f = f ′ ◦ [p], where
[p] : A → A is the multiplication by p map. We proved in the section on formal groups
that [p] : A → A is an isogeny, i.e., injective and makes A into a finite free algebra
over itself; therefore R′ := A ⊗[p],A,f R is a finite free algebra extension of R. Since
R is normal and has algebraically closed fraction field, the inclusion R ↪→ R′ has a

section σ : R′ → R. The composition A [p]−→ A → R′
σ−→ R has the desired property by

construction.

7 Aside: duality theory

Before proving the main theorem – the Hodge–Tate decomposition –, there is one re-
maining algebraic topic concerning finite flat group schemes and p-divisible groups:
duality.

k is an arbitrary commutative ring in this section. If M is a finite flat k-module, then
we write M∗ := Homk -mod(M,k) for its dual, which is another finite flat k-module under
point-wise multiplication; a morphism φ : M → N of k-modules induces a morphism of
k-modules φ∗ : N∗ →M∗ by the rule φ(f)(m) := f(φ(m)), where f ∈ N∗ and m ∈M .

Lemma 7.1. The evaluation map

M →M∗∗, m 7→ evm = 〈M∗ 3 f 7→ f(m)〉

is an isomorphism of k-modules. If N is another finite flat k-module, then the canonical
morphism of k-modules

M∗ ⊗k N∗ → (M ⊗k N)∗, f ⊗ g 7→ 〈M ⊗k N 3 m⊗ n 7→ f(m)g(n)〉

is an isomorphism.

Proof. By localising at each maximal ideal of k we may assume k is local (which is our
only case of interest anyway). Then M and N are finite free k-modules, in which case
the claims are trivial linear algebra.



36 Matthew Morrow

Suppose that G = SpecA is a finite flat group scheme over k, i.e., A is a finite flat
k-module equipped with maps of k-modules e,m, µ, ε, ι

k

e

%%
A

ε

dd

µ

66

ι

YY A⊗k A

m=mult

xx

satisfying the algebra and Hopf-algebra axioms.

Proposition 7.2. The dual maps

k = k∗

ε∗

''
A∗

e∗

gg

m∗

44

ι∗

YY A∗ ⊗k A∗ = (A⊗k A)∗

µ∗

uu

also satisfy the algebra and Hopf algebra axioms, thereby giving rise to a finite flat group
scheme G∗ := SpecA∗, known as the Cartier dual of G.

Proof. Tedious algebra shows that the algebra+Hopf algebra axioms are symmetric:

(1) m is associative and µ is coassociative:

A⊗k A⊗k A
m⊗idA // A⊗k A

A⊗k A

idA⊗µ

OO

Aµ
oo

µ

OO A⊗k A⊗k A A⊗k A
µ⊗idAoo

A⊗k A

idA⊗µ

OO

Aµ
oo

µ

OO

(2) e is a left unit and ε is a left counit:

k ⊗k A
e⊗µ //

=

))RRR
RRR

RRR
RRR

RRR
R A⊗k A

m
��
A

k ⊗k A A⊗k A
ε⊗idAoo

A

=

iiRRRRRRRRRRRRRRRR
µ

OO

(3) Existence of left coinverses

A⊗k A

mult
��

A⊗k A
ι⊗idAoo

A A
ε

vvmmm
mmm

mmm
mmm

mmm
m

µ

OO

k

e

hhQQQQQQQQQQQQQQQQ

(4) Commutativity and cocommutativity

A⊗k A A⊗k A
swapoo

A

µ

OO

µ

iiRRRRRRRRRRRRRRRR
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(5) “µ and ε are homomorphisms of k-algebras”

A⊗k A
m //

µ⊗µ
��

A

µ

��
A⊗k A m

// A

A
µ // A⊗k A

k

e

OO

=
// k ⊗k k

e⊗e

OO

(6) “ι is a homomorphism of k-algebras”

Example 7.3. If Γ is a finite group over k, then k[Γ]∗ = kΓ. In particular, µ∗n,k =
Z/nZ

k
. If k has characteristic p, then αp,k is self-dual.

It is important to identify the points of the Cartier dual G∗ in terms of the group of
morphisms Hom(G,Gm,k):

Lemma 7.4. For any k-algebra R, there is a natural identification of groups

G∗(R) = Hom(G⊗k R,Gm,R)

(where the right denotes the group of morphisms of affine group schemes over R).

Proof. ReplacingG byG⊗kR and k byR, it is enough to show thatG∗(k) = Hom(G,Gm,k).
Since any f ∈ G∗(k) = Homk-alg(A∗, k) has the form f = eva for some unique a ∈ A,

we have an inclusion
G∗(k) ↪→ A, eva 7→ a,

whose image we denote by Σ, i.e.,

Σ = {a ∈ A : eva : A∗ → k is a k-algebra homomorphism}

When is eva a k-algebra homomorphism? Let α, β ∈ A∗; the product α · β of α, β in
A∗ is by definition (α⊗β)◦µ : A→ A⊗kA→ k⊗kk = k, and so eva(α·β) = (α⊗β)(µ(a)).
On the other hand, eva(α) eva(β) = α(a)β(a) = α ⊗ β(a ⊗ a). It follows that eva is
multiplicative if and only if µ(a) = a ⊗ a. A similar argument shows that eva(1A∗) if
and only if ε(a) = 1.

So Σ := {a ∈ A : µ(a) = a ⊗ a and ε(a) = 1}. But the set of Hopf algebra
homomorphisms k[t, t−1] → A also corresponds to Σ, via evaluation at t. This gives
natural bijections

G∗(k) = Σ = Hom(G,Gm,k),

which you should check respects the group structures on the left and right sides.

It can be shown that the Cartier dual of a short exact sequence of finite flat groups
schemes 0→ H → G→ F → 0 is again short exact: 0→ F ∗ → G∗ → H∗ → 0.

Definition 7.5. If G = (G0 ⊆ G1 ⊆ · · · ) is a p-divisible group over k, of height h, then
its Cartier dual is the p-divisible group

G∗ = (G∗0
j∗1−→ G∗1

j∗2−→ · · · )

(where the transition maps are the duals of the maps in Lemma 3.9). Using the previous
fact on short exact sequences, it is easy to check that this is really a p-divisible group.
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Example 7.6. µ∗p∞,k = Qp/Zp
k
.

We quote, but do not prove, the following result about duals of p-divisible groups
(the dimension of a p-divisible group G is by definition the dimension of its connected
part G◦ as in Definition 4.10):

Proposition 7.7. Let G be a p-divisible group over k of height h. Then

dimG+ dimG∗ = h.

8 The Hodge–Tate decomposition

Our aim is to soon prove the Hodge–Tate decomposition of a p-divisible group; although
some parts of the intermediate theory can be developed in greater generality, from now
on we work in the following set-up:

Let K be a complete discrete valuation field; recall this means that K is complete
under a norm | · | : K → R≥0 satisfying the following properties: |x| = 0 if and only
if x = 0; |xy| = |x||y|; |x + y| ≤ max(|x|, |y|); and there exists π ∈ K× such that
|π| generates the group |K×| (this is the “discreteness” condition). These assumptions
imply that the ring of integers O := {x ∈ K : |x| ≤ 1} is a complete discrete valuation
ring with maximal ideal m = πO (in particular, O is a complete Noetherian local ring
– so the theory we developed in the previous chapters applies).

The norm extends uniquely to the algebraic closure Kalg of K (but it will no longer
be discrete), and we write CK for its topological completion; the norm also extends to
CK , and we set R := {x ∈ CK : |x| ≤ 1} for its ring of integers. It is a fact (Krasner’s
Lemma) that CK is still algebraically closed.

The action of the absolute Galois group GalK := Gal(Kalg/K) extends by continuity
to CK , and by functoriality will also act on the various groups of points, tangent spaces,
etc. which we will study.

Finally, we assume that K has characteristic zero but that k := O/m is a perfect
field of characteristic p.

Example 8.1. O = Zp ⊆ K = Qp; then CK is the completion of the algebraic closure
of Qp, sometimes denoted by Cp.

Let G be a p-divisible group over O. Recall that the goal of Hodge–Tate decompo-
sition is to understand the natural action of GalK on the Tate module (and maybe also
comodule)

Tp(G) = lim←−
n

Gn(Kalg), Φp(G) = lim−→
n

Gn(Kalg).

We begin this process by slightly reinterpreting the Tate (co)module:

Lemma 8.2. If H is any finite flat group scheme over O, then the natural maps

H(Kalg) ↪→ H(CK)← H(R)→ lim←−
r

H(R/mrR)

are all isomorphisms.

Proof. Recall that finite free group schemes over any algebraically field of characteristic
zero are equivalent to the category of groups, by taking points: so if L′ ⊃ L is any
extension of algebraically closed, characteristic zero fields, then H(L) = H(L′).
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Write H = SpecB. The image of any O-algebra homomorphism f : B → CK is
finitely generated over O, hence lies in R (this is not hard to see); so H(CK) = H(R).

Finally, R is mR-adically complete, so

H(R) = HomO-alg(B,R) = lim←−
r

HomO-alg(B,R/mrR).

Corollary 8.3. Tp(G) = lim←−nGn(CK) and Φp(G) = G(R)tors.

Proof. First equality is immediate from the lemma. For the second, use

Φp(G) = lim−→
n

Gn(Kalg) = lim−→
n

lim←−
r

H(R/mrR) = G(R)tors,

where the final equality is from last time.

Now we define the logarithm map for G. As usual, we write Gn = SpecAn, and we
let A◦ := lim←−nA

◦
n be the connected formal group associated to the connected p-divisible

group G◦. Also set I := Ker ε ⊆ A◦.
If M is an O-module, then the tangent space of G with values in M is by definition

the tangent space of G0 with values in M (as in Definition 4.10), i.e.,

tG(M) := tG0(M) = HomO(I/I2,M).

The logarithm map will be a Zp-module homomorphism

logG : G(R) −→ tG(CK),

which we now construct. From (the easy left exactness part of) Proposition 6.5, and
Lemma 6.3, we know that the inclusion of points G◦(R) ⊆ G(R) has torsion quotient.
So, if f ∈ G(R), then pif ∈ G◦(R) = ContHomO-alg(A◦, R) for i � 0, and it makes
sense to evaluate it at any a ∈ A◦ to get (pif)(a); then we can divide by pi in CK to get

(pif)(a)

pi
∈ CK

(note that pif denotes multiplication by pi in the group of points G(R), while the
division by pi is honest division in the field CK).

Lemma 8.4. The limit

logG(f)(a) := lim
i→∞

(pif)(a)

pi

exists in CK if a ∈ I, and has the following properties:

(i) logG(f)(a) = 0 if a ∈ I2

(ii) logG(f + g)(a) = logG(f)(a) + logG(g)(a) if f, g ∈ G(R) and a ∈ I.

Proof. We define a descending filtration on G◦(R) = ContHomO-alg(A◦, R) by the rule

F λG◦(R) = {f : ν(f(a)) ≥ λ ∀a ∈ I}

where λ > 0 is any positive real number. Here, as often in the theory of complete
discrete valuation fields, we write ν(x) := − logp |x| for the valuation of x ∈ CK ; note
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that |x| = p−ν(x), and so ν(x) and |x| are equivalent ways of measuring the size of x
(but |x| is small when ν(x) is large!).

If f ∈ F λG◦(R) and a ∈ I, then [p]a = pa+ z for some z ∈ I2, and so

(pf)(a) = f([p]a) = f(pa+ z) = pf(a) + g(z),

which has valuation≥ min(ν(p)+λ, 2λ). This shows that pF λG◦(R) ⊆ F λ+min(ν(p),λ)G◦(R).
Since any f ∈ G◦(R) belongs to f ∈ F λG◦(R) for some λ > 0, this shows that for

any λ′ � 0 (which we may as well assume is ≥ ν(p)), we can find i � 0 such that
pif ∈ F λ′G(R); but then the previous argument shows that

(pi+1f)(a)

pi+1
− (pif)(a)

pi
=

(pif)(z)

pi+1
,

which has valuation ≥ 2(λ′ + iν(p)) − (i + 1)ν(p) = 2λ′ + (i − 1)ν(p) → ∞ as i → ∞.

This shows that the sequence (pif)(a)
pi

is Cauchy as i→∞, and so it converges inCK .

This has also shown that for any z ∈ I2, the sequence (pif)(z)
pi

tends to zero as i→∞,

proving (i).
For (ii), write µ(a) = a ⊗ 1 + 1 ⊗ a + z for some z ∈ I⊗̂OI, so that (f + g)(a) ≡

f(a) + g(z) mod f(I)g(I) and use the same estimates.

The previous lemma shows that the logarithm

logG : G(R)→ tG(CK)

is a well-defined Zp-module homomorphism.

Corollary 8.5. logG has the following properties:

(i) it is a local homeomorphism: if λ > ν(p)/(p− 1) then

logG : F λG◦(R)
'→ {τ ∈ tG(CK) : ν(τ(a)) ≥ λ ∀a ∈ I/I2}

(ii) it is surjective and has kernel G(R)tors.

Proof. (i): Pick a non-canonical isomorphism A◦ ∼= O[[X1, . . . , Xn]], so that I/I2 is the
free O-module with basis X1, . . . , Xn; then check that the inverse is given by

τ 7→ the unique f ∈ ContHomO-alg(A◦, R) satisfying f(Xi) = τ(Xi) ∀i

(ii): Certainly Ker logG ⊆ G(R)tors since tG(CK) is torsion-free. In the other direc-
tion, if f ∈ Ker logG then pi ∈ Ker logG for all i ≥ 1: by picking i� 0 we may arrange
that pif ∈ F λG◦(R) for λ sufficiently large that logG is a local homeomorphism (in
particular injective) on F λG◦(R), by the previous corollary. This implies pif = 0 for
i� 0, so f is torsion.

Finally, if τ ∈ tG(CK) then piτ is in the RHS of i for i� 0; thus piτ is in the image
of logG. But we proved in Corollary 6.6 that G(R) is divisible, whence it easily follows
that τ is also in the image (this is the key application of Corollary 6.6.)

We now have a short exact sequence

0 −→ G(R)tors −→ G(R)
logG−→ tG(CK) −→ 0

in which all maps are ΓK-equivariant (automatically).



p-divisible groups 41

Example 8.6. Suppose that G = µp∞,O. Then we saw last time that G(R) = 1 + mR,
and so G(R)tors is the group of (necessarily p-power) roots of unity µp∞ in 1+mR. Thus
we have an exact sequence

0 −→ µp∞ −→ 1 + mR
logG−−−→ CK −→ 0,

and it can be directly checked that logG is the usual p-adic logarithm log(1 + x) =∑∞
i=(−1)n+1xn/n!

The next step is to relate the logarithm on G to the previous example using duality.
For each n we apply Lemma 7.4 to write

G∗n(R) ∼= Hom(Gn ⊗O R,Gm,R) = Hom(Gn ⊗O R,µpn,R)

(the second equality is an easy consequence of the fact that Gn is killed by pn, so any
homomorphism to Gn lands in µpn). Letting n→∞ gives

Tp(G
∗) = lim←−

n

Gn(R) ∼= Hom(G⊗O R,µp∞,R),

where the right sides denotes morphism of p-divisible groups over R. By functoriality
any map of p-divisible groups induces a map on the points and the tangent spaces,
meaning that we have maps of groups

Hom(G⊗O R,µp∞,R)

ttiiii
iiii

iiii
iiii

ii

++VVVV
VVVVV

VVVVV
VVVVV

HomZp(G(R),µp∞,O(R)) HomCK
(tG(CK)), tµp∞,O(CK))

By evaluating in the usual way (i.e., a map of abelian groups A→ Hom(B,C) induces
B → Hom(A,C) by evaluation) we finally arrive at maps of Zp-modules

α : G(R)→ HomZp(Tp(G
∗), 1 + mR)

(which restricts to torsion points) and

dα : tG(CK)→ HomZp(Tp(G
∗),CK)

In conclusion we obtain a commutative diagram of Zp-modules, with exact rows, where
GalK acts on everything compatibly:

0 // G(R)tors
//

α0

��

G(R)
logG ////

α

��

tG(CK)

dα
��

// 0

0 // HomZp(Tp(G
∗), µp∞) // HomZp(Tp(G

∗), 1 + mR)
log

// HomZp(Tp(G
∗),CK) // 0

Proposition 8.7. α0 is an isomorphism, and α and dα are injective.

Theorem 8.8. (i) Taking GalK-fixed points, the induced maps

αO : G(O)→ HomGalK (Tp(G
∗), 1 + mR)

and
dαO : tG(K)→ HomGalK (Tp(G

∗),CK)

are isomorphisms. (Here HomGalK denotes GalK-equivariant homomorphisms of
Zp-modules).
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(ii) Hodge–Tate decomposition: There is a GalK-equivariant isomorphism of CK-
vector spaces

HomZp(Tp(G),CK) ∼= tG∗(CK)⊕ (tG(CK)⊗CK
HomZp(Zp(1),CK))

Although the above statement of the Hodge–Tate decomposition is the usual one, it
may look nicer to take CK-duals of it, i.e., HomCK

(−,CK) everywhere, and to remember
that t(CK) = t(K) ⊗K CK , to finally obtain a GalK-equivariant isomorphism of CK-
vector spaces

Tp(G)⊗Zp CK ∼= (t∗G∗(K)⊗K CK)⊕ (tG(K)⊗K CK ⊗Zp Zp(1))

where the first term involves the cotangent space ofG∗, i.e., t∗G∗(K) := HomK(tG∗(K),K).

Remark 8.9 (Tate twists). The rank one free Zp-module

Tp(µp∞,O) = lim←−
n

µpn

(where the transition maps in the inverse system are given by raising to the power of p)
is known as a Tate twist and denoted by Zp(1). A choice of basis element e corresponds
to a choice of a sequence of p-power roots of unity ζp, ζ

2
p , · · · ∈ Kalg.

Although Zp(1) is a free Zp-module of rank one, the action of GalK on Zp(1) (induced
by the actions on each µpn) is interesting. Specifically, if we do chose a basis element
e = (ζp, ζp2 , . . . ) as above, then the action is given by

σ(e) = χ(σ)e,

where χ(σ) ∈ Z×p is the unique p-adic unit satisfying σ(ζpr) = ζ
χ(σ)
pr for all r ≥ 1. The

homomorphism χ : GalK → Z×p is known as the cyclotomic character.
One typically writes Zp(−1) = HomZp(Zp(1),Zp) for its dual, which is again a rank

one free Zp-module, on which the action of GalK is related to the inverse of the cyclo-
tomic character.

Remark 8.10 (Tate–Sen theory). In the theorem and proposition we need some results
of Tate and Sen concerning the action of GalK , the absolute Galois group of K, on CK .
The first of these is the surprising hard to prove fact that the only elements of CK
fixed by the action are the elements of K, i.e., CGalK

K = K. The second is that, on the
other hand, C⊗Zp Zp(1) has no non-zero element fixed by GalK ; more explicitly, using
the cyclotomic character of the previous remark, this means that if x ∈ CK satisfies
σ(x) = χ(σ)x for all σ ∈ GalK , then x = 0.

Proof of Theorem, assuming Proposition. Firstly, we add to the above diagram what we
know from the Proposition:

0 // G(R)tors
//

α0 ∼=
��

G(R)
logG // //

� _

α

��

tG(CK)� _

dα
��

// 0

0 // HomZp(Tp(G
∗), µp∞) // HomZp(Tp(G

∗), 1 + mR)

��

log
// HomZp(Tp(G

∗),CK) //

��

0

cokerα
∼= // coker dα



p-divisible groups 43

(The isomorphism between the kernels is a formal consequence, through a diagram chase,
of the left vertical isomorphism.) Taking GalK-fixed points of the central and vertical
columns gives short exact sequences

0 −→ G(O)
αO−→ HomGalK (Tp(G

∗), 1 + mR) −→ (cokerα)GalK

and
0 −→ tG(K)

dαO−→ HomGalK (Tp(G
∗),CK) −→ (coker dα)GalK

It follows that the map
cokerαO −→ coker dαO

(induced by the logarithms) is injective. Therefore, for (i), it is enough to show that the
injection dαO is surjective. Since the domain and codomain of dαO are K-vector spaces
of dimensions dimG and n∗ := dimK HomGalK (Tp(G

∗),CK), we know that dimG ≤
n∗ := dimK HomGalK (Tp(G

∗),CK), and to prove surjectivity it is equivalent to show
this is an equality.

But swapping G and G∗, we also know dimG∗ ≤ n := dimK HomGalK (Tp(G),CK).
Since dimG+dimG∗ = h (quoted in the duality section), it becomes equivalent to show
n+ n∗ ≤ h, and this is what we will do. The key (also to proving (ii)) will be defining
a certain pairing.

We have

G∗n(CK) = Hom(Gn ⊗O CK ,µpn,CK
) = HomZp(Gn(CK), µpn),

where the first equality is by duality, and the second equality is by identifying the cate-
gory of finite flat group schemes over CK with the category of finite abelian groups. Then
take limit over n to get a GalK-equivariant identification Tp(G

∗) = HomZp(Tp(G),Zp(1)),
where Zp(1) is the rank one free Zp-module Tp(µp∞,O) = lim←−n µpn (i.e., the Tate twist).
The same is true swapping G and G∗, which amounts to the statement that we have a
perfect pairing between free, rank-h Zp-modules

Tp(G)× Tp(G∗)→ Zp(1)

This induces a perfect pairing between h-dimensional CK-vector spaces

HomZp(Tp(G),CK)×HomZp(Tp(G
∗),CK)→ HomZp(Zp(1),CK), (†)

and taking Galois invariants induces a pairing

HomGalK (Tp(G),CK)×HomGalK (Tp(G
∗),CK)→ HomGalK (Zp(1),CK) = 0

where the vanishing is by the second part of Tate–Sen theory. It follows that

HomGalK (Tp(G),CK)⊗K CK and HomGalK (Tp(G
∗),CK)⊗K CK

are orthogonal under the pairing (†), and hence the sum of their dims is ≤ h, as required
to complete the proof of (i).

It follows that actually n + n∗ = h, and so the CK-vector spaces of the previous
lines are not merely orthogonal, but even orthogonal complements of each other under
pairing (†). This means there is a natural GalK-equivariant identification

HomZp(Tp(G),CK)/(HomGalK (Tp(G),CK)⊗KCK) ∼= HomGalK (Tp(G
∗),CK)⊗KHomZp(Zp(1),CK)
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By the isomorphisms of (i), this may be rewritten as

HomZp(Tp(G),CK)/tG(CK) ∼= tG∗(CK)⊗CK
HomZp(Zp(1),CK)

All that remains in (ii) is to show that this description of HomZp(Tp(G),CK) admits
a GalK-equivariant splitting. Unfortunately this is another piece of Tate–Sen theory
which we must skip. (The idea is that the GalK-actions on tG(CK) and the right side
are too incompatible for their extension HomZp(Tp(G),CK) to not be split.)

Proof of Proposition. Step 1: α0 is an isomorphism. As we already pointed out in the
proof of the theorem, we have G(CK) = HomZp(G∗n(CK), µpn); taking the limit over n
(in a different direction to the previous theorem) yields an isomorphism

G(R)tors = lim−→
n

Gn(CK)
'→ HomZp(lim←−

n

G∗n(CK), µpn) = HomZp(Tp(G
∗
n), µpn)

(where the equalities follow from the lemma and corollary at the start of the section).

Step 2: The kernel and cokernel of α are Qp-vector spaces (a priori they are only
Zp-modules). Indeed, by Step 1 it follows by the snake lemma, or a similar diagram
chase, that the maps Kerα→ Ker dα and cokerα→ coker dα, induced by the logarithm,
are isomorphisms of Zp-modules. Since dα is a map between Qp-vector spaces, it follows
that its kernel and cokernel are Qp-vector spaces.

Step 3: G(R)GalK = G(O) (which was already implicitly used in the theorem). From
the short exact sequence of Proposition 6.5, it is enough to prove this separately for G◦

and Gét. In the first case, we have

G◦(R)GalK = ContHom(A◦, R)GalK = ContHom(A◦, RGalK ) = ContHom(A◦,O),

where the middle equality is tautological, but the second equality if a consequence of
Tate–Sen theory stating that CGalK

K = K (and so, restricting to elements of absolute
value ≤ 1, we have RGalK = O). Next, in the étale case, we use Lemma 6.3 to write
Gét(R) = lim−→n

Gn(kalg) and Gét(O) = lim−→n
Gn(k), where kalg = R/mR is an algebraic

closure of k = O/m. But for each group scheme H = Gn over O, we have H(kalg)GalK =
H((kalg)GalK ) = H(k), from which the result follows.

Step 3.5: tG(CK)GalK = tG(K). By the same argument as Step 3.

Step 4: α is injective on G(O). Since G(O) = G(R)GalK , the kernel of α restricted to
G(O) is (Kerα)GalK , which is a Qp-vector space. By decomposing G into its connected
and étale piece (this reduction to the connected and étale pieces is not entirely trivial:
it uses the fact that Tp(G

◦∗) � Tp(G
∗)), it is sufficient to show that the Zp-modules

G◦(O) and Gét(O) contain no non-zero Qp-vector spaces. This is easy for Gét(O) since
it is torsion by Lemma 6.3. On the other hand G◦(O) = ContHom(A◦,O): by the same
filtration argument as used when proving convergence of the logarithm, we see by an
easy induction that if f : A◦ → O is any function, then ([p]rf)(I) ⊆ mr; thus an element
f of G◦(R) which is infinitely p-divisible sends I to

⋃
r≥1 m

r = 0, and so f is the zero
element of G◦(R).

Step 5: The restriction of dα to tG(K) ⊆ tG(CK) is injective. From Step 4 it
follows (using Step 1 to make a diagram chase) that dα is injective on the Zp-submodule
logG(G(O)) ⊆ tG(CK), therefore also injective on the Qp-vector subspace it generates;
but this Qp-vector subspace is exactly tG(K) (by an easy modification of the proof of
Corollary 8.5(ii)).
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Step 6: dα is injective. We factor the map as

tG(CK) = tK(K)⊗K CK → HomZp(Tp(G
∗),CK)GalK ⊗K CK → HomZp(Tp(G

∗),CK),

where the first arrow is injective by Step 5. The second arrow is injective by the general
linear algebra result.

Step 7: α is injective. As noted in Step 2, we have Kerα
'→ Ker dα, which we have

just shown is zero.
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